1. Solve each system of equations:

ANSWERS
(1) $4 x+3 y=7$
(2) $a=-b-4$
$-2 x+y=9$
$4 b-a=-1$

Find the value of $\frac{x y}{a-b}$.
2. Find the value of $\frac{B^{2} \sqrt{A^{2}+C^{2}}}{D}$ when

- $2 A=\sqrt{A+138}$
- $B=\sqrt{8} \cdot \frac{1}{4} \sqrt{6}$
- C is the positive solution of $C^{2}+6 C-112=0$
- $\sqrt{D+18}=\sqrt{7 D}$

3.

(1) A is the value of the x-intercept of the line containing the point $(7,10)$ and perpendicular to the line $2 x+4 y=10$.
(2) B is the value of the y-intercept of the line through the midpoint of the segment from $(3,7)$ to $(5,19)$ and containing the point $(-2,-3)$.
(3) C is the vertical distance between the lines $2 x+4 y=6$ and $2 x+4 y=9$.

Find the value of $B C-4 A$.
4.

Let $A=\cos A$ for
And $D=\sin A$.
Triangle 1
8

Triangle 2

Let B=tan B for Triangle 2

And $C=\cot B$.
Fin the value of $\left(A^{2}+D^{2}\right)(B C)^{3}$
5. Let $\mathrm{A}=\operatorname{GCF}(15,25)$ and $\mathrm{B}=\operatorname{LCM}(15,25)$.

If $\frac{A B}{B-A}$ is written in simplest form, find the sum of the numerator and denominator.

1. Let line \boldsymbol{C} have the equation $2 x-3 y=9$ while the equation of line \boldsymbol{m} is $3 x+y$ $=8$.
A = slope of line m.
$B=y$-intercept of line \boldsymbol{e}
C = the abscissa of the point of intersection of the lines
$D=$ the ordinate of the point of intersection of the lines.
Find the value of $[A-B(D+C)]$
2. The diameter of Sphere A is 12. The diameter of Sphere B is 50% of that of Sphere A.

$$
\begin{array}{ll}
A=\text { Volume of Sphere A } & B=\text { Surface area of Sphere } A \\
C=\text { Volume of Sphere B } & D=\text { Surface area of Sphere B }
\end{array}
$$

Find the value of the sum of $A+B+C+D$.
3.
$A=\binom{10}{0}+\binom{10}{1}+\binom{10}{2}+\ldots+\binom{10}{9}+\binom{10}{10}$
$B=$ probability of flipping a coin 5 times and getting all heads
$\mathrm{C}=$ number of distinct permutations of BERRY
Find the value of $\frac{A B}{C}$.
4. Let
$A=$ ratio of the area of a circle inscribed in a square to the area of the square itself.
$B=$ ratio of the circumference of the same circle to the perimeter of the same square.

Find the value of $A+B$.
5. There are 6 students on Simmons' Algebra Math Team. They never ever put their names on their papers.

- They work in pairs. How many different pairs can be formed during the year? Let that value = C.
- If Mrs. Clopton handed back a set of papers, what is the probability that exactly 5 will get the correct paper back? Let that value $=\mathrm{A}$.
- She can arrange them in lines ranked by height, either tall to small or small to tall. How many other ways can she arrange them in a line? Let that value $=B$.

Find $\frac{A}{B+C}$

1. Find $\mathrm{A}(\mathrm{C}-\mathrm{B})$ if:

ANSWERS

- The area of a circle is $A \pi$ while the area of its inscribed square is 36 .
- The area of an equilateral triangle of side length 6 is $B \sqrt{3}$.
- C is the percent of the figure not shaded, to the nearest whole percent.

2. Let

- $\mathrm{A}=$ the number of distinct arrangements of ILOVEMATH
- $\mathrm{B}=$ the product of the integers in the interval [-100, 100].
- $C=$ the sum (written in base 20) of the first 20 positive odd decimal integers
Find ($A B C$).

3. Let

$$
\mathrm{A}=\frac{\binom{8}{5}}{7} \quad \mathrm{~B}=(\sqrt[3]{A}+1)^{3} \quad \mathrm{C}=\frac{A^{3}+\sqrt[3]{B}}{5}
$$

Find $\frac{B+C}{10}-A$.
4. Let

- A= the probability of getting a sum of 9 when rolling two standard 6 sided dice.
- $B=$ the probability of drawing a black card and then a diamond, with replacement.
- $C=$ the probability that a coin, flipped 5 times, will land tails one more times than heads.
- $D=$ the probability that in a bowl of 64 cubes (20 green, 19 red and the rest blue) you randomly draw a cube that is not green.
-

Find the value of $\frac{B \sqrt{A}}{C+D}$.
5.

- In many states license plates have 3 letters followed by 3 digits. If 0 and 0 cannot be used, let A be the number of such plates that begin with the letter A.
- Let $\mathrm{B}=$ the base that has the value of 501 for 321_{10}.
- Rachel ran 100 yards in 12 seconds. Find C , her rate in miles per hour to the nearest whole number.

Find $A /(B+C)$.

1. Let A be the decimal value of $123_{4}+456_{7}$. Let $B=$ the slope of the line perpendicular to $4 x+9 y=105$.	ANSWERS		
Find the volume (written as $C \pi$) of a sphere whose great circle has a			
circumference of 18π.			
Find the sum of the numerator and denominator of $B(A / C)$.			2. Let $A=$ the side length of the cube whose surface area is numerically
:---			
equal to its volume.			
Let $B=$ the radius length of the sphere whose volume is numerically			
equal to its surface area.			
Find A^{B}.			

