ANSWERS

1. Solve each system of equations:

(1)
$$4x + 3y = 7$$

$$-2x + y = 9$$

Find the value of $\frac{xy}{a-b}$.

2. Find the value of $\frac{B^2\sqrt{A^2+C^2}}{D}$ when

- $2A = \sqrt{A + 138}$
- $B = \sqrt{8} \cdot \frac{1}{4} \sqrt{6}$ C is the positive solution of $C^2 + 6C 112 = 0$
- $\sqrt{D+18} = \sqrt{7D}$

- (1) A is the value of the x-intercept of the line containing the point (7,10) and perpendicular to the line 2x + 4y = 10.
- (2) B is the value of the y-intercept of the line through the midpoint of the segment from (3,7) to (5,19) and containing the point (-2, -3).
- (3) C is the vertical distance between the lines 2x + 4y = 6 and 2x + 4y = 9.

Find the value of BC – 4A.

Triangle 1

Let $A = \cos A$ for And $D = \sin A$.

Triangle 2

Let B = tan B for Triangle 2 And $C = \cot B$.

Fin the value of $(A^2 + D^2)(BC)^3$

5. Let A = GCF(15,25) and B = LCM(15,25).

If $\frac{AB}{B-A}$ is written in simplest form, find the sum of the numerator and denominator.

1. Let line ℓ have the equation 2x – 3y = 8.	ANSWERS	
A = slope of line <i>m</i> .		
B = y-intercept of line @		
C = the abscissa of the point of interse		
D = the ordinate of the point of inters		
Find the value of [A – B(D + C)]		
2. The diameter of Sphere A is 12. The		
Sphere A.		
A = Volume of Sphere A	B = Surface area of Sphere A	
C = Volume of Sphere B	D = Surface area of Sphere B	
Find the value of the sum of A+B+C+D.		
3.		
$A = {10 \choose 0} + {10 \choose 1} + {10 \choose 2} + \dots + {10 \choose 9} + {1 \choose 2}$		
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
B = probability of flipping a coin 5 times		
C = number of distinct permutations of BERRY		
Find the value of $\frac{AB}{C}$.		
C		
4. Let		
A = ratio of the area of a circle inscrib		
itself.		
B = ratio of the circumference of the same circle to the perimeter of the same		
square. Find the value of A + B.		
5. There are 6 students on Simmons' A their names on their papers.		
 They work in pairs. How many diffe 		
year? Let that value = C.		
If Mrs. Clopton handed back a set of		
exactly 5 will get the correct paper		
She can arrange them in lines ranket		
to tall. How many other ways can s		
value = B.		
, A		
Find $\frac{A}{B+C}$		

ANSWERS

1. Find A(C-B) if:

- The area of a circle is $A\pi$ while the area of its inscribed square is 36.
- The area of an equilateral triangle of side length 6 is $B\sqrt{3}$.
- C is the percent of the figure not shaded,

to the nearest whole percent.

2. Let

- A = the number of distinct arrangements of ILOVEMATH
- B = the product of the integers in the interval [-100, 100].
- C = the sum (written in base 20) of the first 20 positive odd decimal integers

Find (ABC).

3. Let

$$A = \frac{\binom{8}{5}}{7}$$

$$B = \left(\sqrt[3]{A} + 1\right)^3$$

$$C = \frac{A^3 + \sqrt[3]{B}}{5}$$

Find
$$\frac{B+C}{10}-A$$
.

4. Let

- A= the probability of getting a sum of 9 when rolling two standard 6sided dice.
- B = the probability of drawing a black card and then a diamond, with replacement.
- C = the probability that a coin, flipped 5 times, will land tails one more times than heads.
- D= the probability that in a bowl of 64 cubes (20 green, 19 red and the rest blue) you randomly draw a cube that is not green.

•

Find the value of
$$\frac{B\sqrt{A}}{C+D}$$

5.

- In many states license plates have 3 letters followed by 3 digits. If O and O cannot be used, let A be the number of such plates that begin with the letter A.
- Let B = the base that has the value of 501 for 321_{10} .
- Rachel ran 100 yards in 12 seconds. Find C, her rate in miles per hour to the nearest whole number.

Find A /(B+C).

1. Let A be the decimal value of $123_4 + 456_7$. Let B = the slope of the line perpendicular to $4x + 9y = 105$. Find the volume (written as $C\pi$) of a sphere whose great circle has a circumference of 18π . Find the sum of the numerator and denominator of B(A/C).	ANSWERS
 Let A = the side length of the cube whose surface area is numerically equal to its volume. Let B = the radius length of the sphere whose volume is numerically equal to its surface area. Find A^B. 	
3. Using the digits 2, 5, 7, and 9 once in each number, how many different four-digit numbers can be formed? Call this N. Find the sum of all the numbers formed above. Call this M. Find the value of M/N.	
 4. Let B = sum of the integral factors of 255. Let E = number of distinct prime factors of 255. Let R = number of proper factors of 255, including 1. Let Y = median of the set of factors of 255. Find the value of B + E + R² + Y. 	
5. Find the sum of all numbers less than 50 that have exactly 3 factors.	