Team Ciphering

Round 2

1. Let $x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}$ Let $y = 2 + \frac{2}{2 + \frac{2}{2 + \frac{2}{1}}}$	ANSWERS
Let $z = (2+3)^{(5-3)}$	
Find the value of $\frac{x^2}{yz}$.	
2. Let	
A = 8 + 6 + $\frac{9}{2}$ + $\frac{27}{8}$ + B = $\frac{9}{10}$ + $\frac{9}{100}$ + $\frac{9}{1000}$ +	
C = the sum of the integral factors of 31415	
Find $\left(\frac{A}{B}\right)^C$	
3. If a% of b is 9, b% of c is 60, and 15% of 80 is a, find c% of a.	
4. Solve each equation.	
(1) $3a - 7 = 8 + 6a + 12$ (2) $8b + 32 = 65 + 5b$	
(3) $13c + 19 = 68 + 6c$ (4) $8d - 2(d + 5) = 2d - 2$	
Find the value of $\frac{ac}{b-d}$.	
5. Lily goes to Berry Middle School and loves math team!	
If A = the number of vowels in the above sentence and	
B = the number of consonants in the sentence,	
What is $\frac{A+B}{A-B}$?	

Team Ciphering	7 th Grade	Round 1
Bobby, Merry and Paul. An entire house in 12 hours, v	children: Nancy, Susan, Carol, Freddy, Laura ny of the older seven children can clean the vhile Paul can totally mess it up in only 3 working" together, how long will it take to	
eleventh of them are math	ntains between 2500 and 3500 books. One books, 1/19 of them are science books, ar y books does the library have?	
3. Let A = complement of Let B = supplement of C Let C = measure of an in Find $\frac{C}{A+2} \times \frac{A}{B}$		
whole number.Let B = the number of	f positive values of n that will make $\frac{48}{n+5}$ and distinct prime factors of 2750. distinct 5-digit numbers in base 2.	a
5. If: 3a + 2b + 9c - 5d = 32 32(a + b + c) + d = 132 5a + 6b - c + 4d = 32 What is $a + b + c$?		

Team Ciphering

1. Consider the number 255.	ANSWERS
• A = the number of proper factors, including 1.	
• B = sum of distinct prime factors	
• C = sum of the exponents of the prime factorization	
Find (C + B)/A	
2. How many different positive three-digit numbers can be made using any three of the following digits: 2, 3, 3, 5, 5?	
3. If the dashed line is 8 cm in length, and the dotted line is 12 cm in length, find the total area of the 3 congruent right triangles.	
4. Let Q = sum of the numerator and denominator of ${}^{2}/_{11} + {}^{5}/_{11}$. Let W = sum of the prime factors of 600 Let E = 80% of 200. Let R = the sum of prime numbers between 10 and 30. 3!5!	
Let T = $\frac{3.3.7}{4!}$	
Let $T = \frac{4!}{4!}$	
Let $T = \frac{4!}{4!}$ Find Q + W + E + R + T	
Let T = $4!$ Find Q + W + E + R + T 5. Find the sum of the measures of each of the angles described below: • The smaller angle formed by the minute and hour hand of a	

Team	Ciph	ering
------	------	-------

1.	ANSWERS
Let f be the fraction of the LCM (12, 24) that is the GCF (12, 24).	
Let <i>u</i> be $g(f(2))$, if $f(x) = 2x - 1$ and $g(x) = x^2$.	
Let <i>n</i> be 2ab if $GCF(a,b) = 5$ and $LCM(a,b) = 175$.	
Find <i>fun</i> .	
2. Simplify and place in A: $4(\sqrt[3]{125}) (2(\sqrt[3]{27}))$	
The area of a circle inscribed in a square is 16π . Let B = area of the square.	
A triangle has angles in the ratio of 2:3:4. Find the complement of the smallest angle; call it C.	
Find A + B - C.	
 3. Let A = the area of a square with side length of 10. Let B = the area of a square formed by joining the midpoints of the above square. Let C = the area of a circle circumscribed about the square in A. Let D = the area of a circle circumscribed about the square in B. Find C/D. 4. Let w = 2012² - 2011² Let a = \frac{P(10,4)}{7!} Let I = the sum of the numerator and denominator of the slope of the line 	
that passes through (3,5) and (2,7). Find w - a + I^2	
 5. In an arithmetic sequence, t₄ = 16 while t₁₂ = 152. What is t₇? Convert the binary number 1010011 to a decimal number. What is the sum of the number of vertices, edges, and faces of a regular tetrahedron? If the sides of a square of area 100 are increased by 40%, what is the area of the new square formed? Find the sum of all of these numbers. 	