1. Let $\mathrm{x}=\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}$ Let $\mathrm{y}=2+\frac{2}{2+\frac{2}{2+\frac{2}{1}}}$ Let $z=(2+3)^{(5-3)}$ Find the value of $\frac{x^{2}}{y z}$.	ANSWERS
2. Let $A=8+6+\frac{9}{2}+\frac{27}{8}+\cdots \quad B=\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots$ $\mathrm{C}=$ the sum of the integral factors of 31415 Find $\left(\frac{A}{B}\right)^{C}$	
3. If $a \%$ of b is $9, b \%$ of c is 60 , and 15% of 80 is a, find $c \%$ of a.	
4. Solve each equation. (1) $3 a-7=8+6 a+12$ (2) $8 b+32=65+5 b$ (3) $13 c+19=68+6 c$ (4) $8 d-2(d+5)=2 d-2$ Find the value of $\frac{a c}{b-d}$.	
5. Lily goes to Berry Middle School and loves math team! If $A=$ the number of vowels in the above sentence and $B=$ the number of consonants in the sentence, What is $\frac{A+B}{A-B}$?	

1. Consider the number 255. - $\mathrm{A}=$ the number of proper factors, including 1. - $B=$ sum of distinct prime factors - $C=$ sum of the exponents of the prime factorization Find $(C+B) / A$	ANSWERS
2. How many different positive three-digit numbers can be made using any three of the following digits: $2,3,3,5,5$?	
3. If the dashed line is 8 cm in length, and the dotted line is 12 cm in length, find the total area of the 3 congruent right triangles.	
4. Let $Q=$ sum of the numerator and denominator of $2 / 11+5 / 11$. Let $\mathrm{W}=$ sum of the prime factors of 600 Let $\mathrm{E}=80 \%$ of 200 . Let $R=$ the sum of prime numbers between 10 and 30 . Let $\mathrm{T}=\frac{3!5!}{4!}$ Find $Q+W+E+R+T$	
5. Find the sum of the measures of each of the angles described below: - The smaller angle formed by the minute and hour hand of a clock at 4:30. - The sum of the interior angles in a pentagon - The vertex angle of an isosceles triangle with base angles of 30°.	

1.	ANSWERS
Let f be the fraction of the $\operatorname{LCM}(12,24)$ that is the GCF $(12,24)$.	
Let u be $g(f(2))$, if $f(x)=2 x-1$ and $g(x)=x^{2}$.	
Let n be 2 ab if $\operatorname{GCF}(a, b)=5$ and $\operatorname{LCM}(a, b)=175$.	
Find fun.	
2. Simplify and place in A: $\quad 4(\sqrt[3]{125})(2(\sqrt[3]{27}))$ The area of a circle inscribed in a square is 16π. Let $B=$ area of the square. A triangle has angles in the ratio of 2:3:4. Find the complement of the smallest angle; call it C. Find $A+B-C$.	
3. - Let $\mathrm{A}=$ the area of a square with side length of 10 . - Let $B=$ the area of a square formed by joining the midpoints of the above square. - Let $\mathrm{C}=$ the area of a circle circumscribed about the square in A . - Let $\mathrm{D}=$ the area of a circle circumscribed about the square in B . Find C/D.	
4. Let $\mathrm{w}=2012^{2}-2011^{2}$ Let $\mathrm{a}=\frac{P(10,4)}{7!}$ Let $\mathrm{I}=$ the sum of the numerator and denominator of the slope of the line that passes through $(3,5)$ and $(2,7)$. Find $w-a+l^{2}$	
5. - In an arithmetic sequence, $t_{4}=16$ while $t_{12}=152$. What is t_{7} ? - Convert the binary number 1010011 to a decimal number. - What is the sum of the number of vertices, edges, and faces of a regular tetrahedron? - If the sides of a square of area 100 are increased by 40%, what is the area of the new square formed? Find the sum of all of these numbers.	

