1. An equilateral triangle has a circle inscribed in it and a circle circumscribed about it. What is the ratio of the area enclosed by the smaller circle to that of the larger circle?
A. $1: 2$
B. $1: 3$
C. $1: 4$
D. $1: 9$
E. NOTA
2. Point Z is on side $\overline{P R}$ of $\triangle \mathrm{PQR}$ such that $\Varangle \mathrm{PZQ}$ is congruent to $\Varangle \mathrm{PQZ}$ and $m \npreceq \mathrm{PQR}$ is 42° larger than $m \npreceq \mathrm{PRQ}$. What is the $m \npreceq R Q Z$?
A. 21°
B. 42°
C. 84°
D. 96°
E. NOTA
3. You do not have access to the interior of the building pictured at the right. The building is 16 yards wide (side XY) and 36 yards long (side WY). XA:AY = 5:3 and WZ is one third of WY. What is the value of $A B$?

A. 18
B. 25
C. $6 \sqrt{17}$
D. $\sqrt{265}$
E. NOTA
4. The larger circle in the diagram has a radius three times that of the smaller circle. The two circles are concentric. What is the ratio of the area of sector OBC to area of the partial ring ABCD ?

A. $1: 2$
B. $1: 4$
C. $1: 8$
D. $1: 9$
E. NOTA
5. Find the area of the triangle bounded by $2 x+5 y=-10$ and the x and y axes.
A. 10
B. 5
C. $5 / 2$
D. $1 / 2$
E. NOTA
6. Find, to the nearest pound, the resultant of 10 lbs of force and 10 lbs of force acting at 60°
A. 27
B. 17
C. 14
D. 10
E. NOTA
7. A triangle has sides 8,12 , and 16 . Find the segments into which the side of length 12 is divided by the bisector of the opposite angle.
A. 6,6
B. $\frac{25}{3}, \frac{11}{3}$
C. $\frac{24}{7}, \frac{74}{7}$
D. 4,8
E. NOTA
8. OA and OB are radii of circle O . The tangents to circle O at points A and B intersect at point P. If the $m \not \subset A O B=70^{\circ}$ then the $m \not \subset A P B=$?

Note: The sketch at the right is left for you to complete.

A. 100°
B. 70°
C. 110°
D. 55°
E. NOTA
9. If $\overline{A C}$ is the diagonal of parallelogram ABCD , then \qquad .
B. it creates
A. it bisects $\not \subset A$
congruent
C. $\mathrm{AC}=\mathrm{BD}$
D. $\mathrm{AB}=\mathrm{BC}$
E. NOTA
10. How many sides does a regular polygon have if each exterior angle is $51 \frac{3}{7}^{\circ}$?
A. 5
B. 6
C. 7
D. 8
E. NOTA
11. If $\overline{X A}$ and $\overline{X B}$ are two adjacent sides of a regular polygon, and $m \not \Varangle A B X$ is one third as large as $m \npreceq A X B$, how many sides does the polygon have?
A. 5
B. 6
C. 7
D. 8
E. NOTA
12. Find the ratio of 3 hours to the month of February 2012.
A. $3: 28$
B. $15: 58$
C. 1:224
D. 1:232
E. NOTA
13. If $\frac{3 a x}{b}=\frac{y}{d}$, then x :y equals
A. 3a:bd
B. $\mathrm{bd}: 3 \mathrm{a}$
C. $\mathrm{b}: 3 \mathrm{ad}$
D. 3ad:b
E. NOTA
14. In $\triangle A B C, \mathrm{AC}=14, \mathrm{AB}=10, \mathrm{BC}=12$. If $\overline{C D}$ bisects $\Varangle A C B$, then AD equals
A. $6 \frac{1}{2}$
B. $6 \frac{4}{11}$
C. $5 \frac{5}{13}$
D. $5 \frac{4}{7}$
E. NOTA
15. If $\frac{x^{2}-5 x+1}{5 x-1}=\frac{2 x^{2}-3 x+2}{3 x-2}$ then $\frac{x^{2}}{5 x-1}=$?
A. $\frac{2 x^{2}}{3 x-2}$
B. $\frac{-3 x+2}{5 x-1}$
C. $\frac{-5 x+1}{3 x-2}$
D. $\frac{(x-1)(x-2)}{5 x-1}$
E. NOTA
16. In the adjacent right triangle, what is the value of y ?

A. $\frac{7}{2}$
B. $\frac{44}{13}$
C. 5
D. 24
E. NOTA
17. In trapezoid ABCD with bases AB and $\mathrm{CD}, \mathrm{AB}=10, C D=6$ and the distance between the bases is 4 . If legs $A D$ and $B C$ are extended to meet at P, P is what distance above $D C$?
A. 5
B. 6
C. 7
D. 8
E. NOTA
18. The diagram at the right consists of two squares and a rectangle. The two squares have side length 1 . Find the area enclosed by the rectangle

A. $2 \sqrt{5}$
B. 1
C. $\sqrt{2}$
D. 2
E. NOTA
19. What is the area of a circle formed by passing a plane 5 inches from the center of a sphere whose radius is 10 inches?
A. $5 \sqrt{3} \pi$
B. 75π
C. $5 \sqrt{2} \pi$
D. 50π
E. NOTA

2012 Hoover HS Math Tournament: Geometry Written Test 20. If an angle is inscribed in an arc (of a circle) whose measure is 150°, what is the angle's measure?
A. 105°
B. 75°
C. 300°
D. 210°
E. NOTA
21. A solid sphere of radius 4 centered at the origin is cut into 8 congruent pieces corresponding to the 8 octants. Find the surface area of one of these pieces.
A. 16π
B. 20π
C. 24π
D. 28π
E. NOTA
22. Four circles $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$, and O_{4} are in the plane such that O_{4} and O_{1} are tangent at $\mathrm{A}, \mathrm{O}_{1}$ and O_{2} are tangent at $\mathrm{B}, \mathrm{O}_{2}$ and O_{3} are tangent at C , and O_{3} and O_{4} are tangent at D . If the measure of $\angle \mathrm{ABC}$ is 80°, find the measure of $\angle \mathrm{ADC}$ in degrees.

A. 120°
B. 100°
C. 90°
D. 80°
E. NOTA
23. In triangle ABC, D is the midpoint of $\overline{B C}$. A circle is tangent to $\overline{B C}$ at B and $\overline{A D}$ at E , and intersects $\overline{A B}$ at P . Similarly, another circle is tangent to $\overline{B C}$ at C and $\overline{A D}$ at F , and intersects $\overline{A C}$ at Q . If $m \npreceq B A C=60^{\circ}$ and $m \npreceq A B C=70^{\circ}$ find $m \Varangle A Q P$.
A. 50°
B. 65°
C. 62°
D. 70°
E. NOTA
24. In isosceles triangle $A B C$ with $A B=A C, D$ is the midpoint of $A B$, and E is on $B C$ such that $D E$ is a perpendicular bisector of $A B$. Given that two of the angles in ABC are both 30 degrees, and that $\mathrm{BE}=2$, find EC .

A. 6
B. 4
C. $2 \sqrt{3}$
D. $3 \sqrt{3}$
E. NOTA
25. In triangle $A B C, D$ is on $B C$ such that $A D$ is an angle bisector. E is on $A D$ and F is on the extension of $B C$ such that $E F$ is the perpendicular bisector of $A D$. Given that $F C=4, F B=9$, find $F D$.
A. 6
B. 8
C. 7
D. 5
E. NOTA

Tie Breakers
TB 1. From a point P in triangle $A B C$, altitudes are dropped to $A B, B C$, and $C A$ at F, D, and E respectively. If $\mathrm{AF}=17, \mathrm{FB}=5, \mathrm{BD}=6, \mathrm{DC}=13$, and $\mathrm{CE}=5$, find EA .

TB 2. A circle with center P is internally tangent to a larger circle with center O at a point A. Chords $A B$ and AC are drawn in circle O such that BC is tangent to circle P at a point D . Find, in degrees, $\angle \mathrm{BDA}$ if $\angle \mathrm{ABC}=77^{\circ}$ and $\angle \mathrm{BCA}=45^{\circ}$.

TB 3. In isosceles triangle ABC , with $\mathrm{AB}=\mathrm{AC}, \angle \mathrm{BAC}=36^{\circ}$ and a point D is on AC such that BD is an angle bisector of angle B. Find AB/BC.

