| 1. An equilateral triangle has a circle inscribed in it and a circle circumscribed about it. What is the ratio of the area enclosed by the smaller circle to that of the larger circle?                                    |                                                                    |                                 |                                   |            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|-----------------------------------|------------|--|--|--|
| A. 1:2                                                                                                                                                                                                                     | B. 1:3                                                             | C. 1:4                          | D. 1:9                            | E. NOTA    |  |  |  |
| 2. Point Z is on side $\overline{PR}$ of $\Delta PQR$ such that $\neq$ PZQ is congruent to $\neq$ PQZ and $m\neq$ PQR is 42° larger than $m\neq$ PRQ. What is the $m\neq$ RQZ?                                             |                                                                    |                                 |                                   |            |  |  |  |
| A. 21°                                                                                                                                                                                                                     | B. 42°                                                             | C. 84°                          | D. 96°                            | E. NOTA    |  |  |  |
| 3. You do not have access to the interior of the building pictured at the right. The building is 16 yards wide (side XY) and 36 yards long (side WY). XA:AY = 5:3 and WZ is one third of WY. What is the value of AB?      |                                                                    |                                 |                                   |            |  |  |  |
| A. 18                                                                                                                                                                                                                      | B. 25                                                              | C. 6√17                         | D. √265                           | E. NOTA    |  |  |  |
| <ul> <li>4. The larger circle in the diagram has a radius three times that of the smaller circle. The two circles are concentric. What is the ratio of the area of sector OBC to area of the partial ring ABCD?</li> </ul> |                                                                    |                                 |                                   |            |  |  |  |
| A. 1:2                                                                                                                                                                                                                     | B. 1:4                                                             | C. 1:8                          | D. 1:9                            | E. NOTA    |  |  |  |
| 5. Find the area of th A. 10                                                                                                                                                                                               | e triangle bounded by 2<br>B. 5                                    | 2x+5y = -10 and the x C. $5/2$  | x and y axes.<br>D. $\frac{1}{2}$ | E. NOTA    |  |  |  |
| 6. Find, to the nearest pound, the resultant of 10 lbs of force and 10 lbs of force acting at 60°A. 27B. 17C. 14D. 10E. NOTA                                                                                               |                                                                    |                                 |                                   |            |  |  |  |
| 7. A triangle has sides 8, 12, and 16. Find the segments into which the side of length 12 is divided by the bisector of the opposite angle.                                                                                |                                                                    |                                 |                                   |            |  |  |  |
| A. 6,6                                                                                                                                                                                                                     | B. $\frac{25}{3}, \frac{11}{3}$                                    | C. $\frac{24}{7}, \frac{74}{7}$ | D. 4,8                            | E. NOTA    |  |  |  |
| 8. OA and OB are radii of circle O. The tangents to circle O at points A and B intersect at point P. If the $m \not AOB = 70^{\circ}$ then the $m \not APB = ?$                                                            |                                                                    |                                 |                                   |            |  |  |  |
|                                                                                                                                                                                                                            | at the right is left for yo                                        | -                               |                                   | $\bigcirc$ |  |  |  |
| A. 100°                                                                                                                                                                                                                    | B. 70°                                                             | C. 110°                         | D. 55°                            | E. NOTA    |  |  |  |
| 9. If $\overline{AC}$ is the diago<br>A. it bisects $4A$                                                                                                                                                                   | nal of parallelogram Al<br>B. it creates<br>congruent<br>triangles | BCD, then<br>C. AC = BD         |                                   | E. NOTA    |  |  |  |

| 2012 Hoover HS Math Tournament: Geometry Written Test                                                                                                                                                                                   |                                                                                   |                                                                      |                                     |         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|---------|--|--|--|
| 10. How many sides does a regular polygon have if each exterior angle is $51\frac{3}{7}$ °?                                                                                                                                             |                                                                                   |                                                                      |                                     |         |  |  |  |
| A. 5                                                                                                                                                                                                                                    | B. 6                                                                              | C. 7                                                                 | D. 8                                | E. NOTA |  |  |  |
| 11. If $\overline{XA}$ and $\overline{XB}$ are two adjacent sides of a regular polygon, and $m \measuredangle ABX$ is one third as large as $m \measuredangle AXB$ , how many sides does the polygon have?                              |                                                                                   |                                                                      |                                     |         |  |  |  |
| A. 5                                                                                                                                                                                                                                    | B. 6                                                                              | C. 7                                                                 | D. 8                                | E. NOTA |  |  |  |
| 12. Find the ratio of 3<br>A. 3:28                                                                                                                                                                                                      | hours to the month of I<br>B. 15:58                                               | February 2012.<br>C. 1:224                                           | D. 1:232                            | E. NOTA |  |  |  |
| 13. If $\frac{3ax}{b} = \frac{y}{d}$ , then x<br>A. 3a:bd                                                                                                                                                                               | :y equals<br>B. bd:3a                                                             | C. b:3ad                                                             | D. 3ad:b                            | E. NOTA |  |  |  |
| 14. In $\triangle ABC$ , AC = 14<br>A. $6\frac{1}{2}$                                                                                                                                                                                   | 4, $AB = 10$ , $BC = 12$ . If<br>B. $6\frac{4}{11}$                               | f $\overline{CD}$ bisects $\measuredangle ACL$<br>C. $5\frac{5}{13}$ | B, then AD equals D. $5\frac{4}{7}$ | E. NOTA |  |  |  |
| 15. If $\frac{x^2 - 5x + 1}{5x - 1} = \frac{2x^2}{3x}$<br>A. $\frac{2x^2}{3x - 2}$                                                                                                                                                      | $\frac{-3x+2}{x-2} \text{ then } \frac{x^2}{5x-1} = ?$<br>B. $\frac{-3x+2}{5x-1}$ | C. $\frac{-5x+1}{3x-2}$                                              | D. $\frac{(x-1)(x-2)}{5x-1}$        | E. NOTA |  |  |  |
| 16. In the adjacent right triangle, what is the value of y? $10 \begin{array}{c} y \\ y \end{array}$                                                                                                                                    |                                                                                   |                                                                      |                                     |         |  |  |  |
| A. $\frac{7}{2}$                                                                                                                                                                                                                        | B. $\frac{44}{13}$                                                                | C. 5                                                                 | D. 24                               | E. NOTA |  |  |  |
| <ul> <li>17. In trapezoid ABCD with bases AB and CD, AB = 10, CD = 6 and the distance between the bases is 4. If legs AD and BC are extended to meet at P, P is what distance above DC?</li> <li>A. 5 B. 6 C. 7 D. 8 E. NOTA</li> </ul> |                                                                                   |                                                                      |                                     |         |  |  |  |
| 0                                                                                                                                                                                                                                       | e right consists of two s<br>length 1. Find the area                              | -                                                                    | 0                                   |         |  |  |  |

A.  $2\sqrt{5}$  B. 1 C.  $\sqrt{2}$  D. 2 E. NOTA

19. What is the area of a circle formed by passing a plane 5 inches from the center of a sphere whose radius is 10 inches?

A.  $5\sqrt{3}\pi$  B.  $75\pi$  C.  $5\sqrt{2}\pi$  D.  $50\pi$  E. NOTA

2012 Hoover HS Math Tournament: Geometry Written Test20. If an angle is inscribed in an arc (of a circle) whose measure is 150°, what is the angle's measure?A. 105°B. 75°C. 300°D. 210°E. NOTA

- 21. A solid sphere of radius 4 centered at the origin is cut into 8 congruent pieces corresponding to the 8 octants. Find the surface area of one of these pieces.
- A.  $16\pi$  B.  $20\pi$  C.  $24\pi$  D.  $28\pi$  E. NOTA

22. Four circles  $O_1$ ,  $O_2$ ,  $O_3$ , and  $O_4$  are in the plane such that  $O_4$  and  $O_1$  are tangent at A,  $O_1$  and  $O_2$  are tangent at B,  $O_2$  and  $O_3$  are tangent at C, and  $O_3$  and  $O_4$  are tangent at D. If the measure of  $\angle ABC$  is 80°, find the measure of  $\angle ADC$  in degrees.





23. In triangle ABC, D is the midpoint of BC. A circle is tangent to BC at B and AD at E, and intersects AB at P. Similarly, another circle is tangent to BC at C and AD at F, and intersects AC at Q. If m≠BAC = 60° and m≠ABC = 70° find m≠AQP.
A. 50° B. 65° C. 62° D. 70° E. NOTA

24. In isosceles triangle ABC with AB=AC, D is the midpoint of AB, and E is on BC such that DE is a perpendicular bisector of AB. Given that two of the angles in ABC are both 30 degrees, and that BE=2, find EC.



A. 6 B. 4 C.  $2\sqrt{3}$  D.  $3\sqrt{3}$ 

25. In triangle ABC, D is on BC such that AD is an angle bisector. E is on AD and F is on the extension of BC such that EF is the perpendicular bisector of AD. Given that FC = 4, FB = 9, find FD.
A. 6 B. 8 C. 7 D. 5 E. NOTA

Tie Breakers

TB 1. From a point P in triangle ABC, altitudes are dropped to AB, BC, and CA at F, D, and E respectively. If AF = 17, FB = 5, BD=6, DC=13, and CE=5, find EA.

TB 2. A circle with center P is internally tangent to a larger circle with center O at a point A. Chords AB and AC are drawn in circle O such that BC is tangent to circle P at a point D. Find, in degrees,  $\angle$ BDA if  $\angle$ ABC = 77° and  $\angle$ BCA = 45°.

TB 3. In isosceles triangle ABC, with AB=AC,  $\angle BAC = 36^{\circ}$  and a point D is on AC such that BD is an angle bisector of angle B. Find AB/BC.