2010 Hoover HS Math Tournament Pre-Algebra Written Test

1. If $\sqrt{8}$ and π and $\sqrt{5.3}$ are examples of irrational numbers, how many irrational numbers are in the interval from 1 to 10, inclusive?							
a) 6	b) 7	c) 10	d) infinite	e)NOTA			
2. If a @ b = $a^2 - b^2$, find the value of (-3 @ - 3) @ -3							
a) 9	b) -9	c) 27	d) 18	e)NOTA			
 Basket Bob has made 4 out of 12 free throws. How many more does he need to make in order to have made 50%? (assume he makes all of the next shots) 							
a) 4	b) 2	c) 6	d) 8	e)NOTA			
4. Find the shaded area if the un-shaded area is a total of 8π square units.							
a) 16 – 8π	b) $32 - 8\pi$	c) 64 – π	d) $64 - 8\pi$	e)NOTA			
5. Find the coordinate of a point that is equal distance from point B ($3, -10$) and C ($-9, 12$).							
a) (-6,2)	b) (-7,3)	c) (-7/2, 3/2)	d) (-3,1)	e)NOTA			
6. Find the length of the longest segment that would fit inside a 2in. by 3in. by 4 in. rectangular prism.							
a) $\sqrt{29}$ in.	b) 3 in.	c) 29 in.	d) $2\sqrt{6}$ in.	e)NOTA			
7. Find the length of the segment interior to the parabola $y = x^2$ that is created by the line $y = 9$.							
a) 9units	b) 3 units	c) 6 units	d) 81 units	e)NOTA			
8. If $\log_2 a = 10$ and $\log_3 b = -3$. Find the value of : $5 \log_2 a - 2 \log_3 b$							
a) 1	b) 44	c) 4	d) 56	e) NOTA			
9. Solve: $(\frac{1}{2})(x-2) + (3)(3-x) = (\frac{1}{4})(x-4)$							
a) -24	b) $\frac{99}{4}$	c) 36	d) $\frac{36}{11}$	e)NOTA			
10. Write $.01\overline{2}$ as a fraction in lowest terms:							
a) $\frac{12}{99}$	b) $\frac{122}{999}$	c) $\frac{12}{90}$	d) $\frac{12}{900}$	e)NOTA			
77	777	20	200				

- 11. Find the area of the circle whose diameter is the segment that connects the x-intercept and the y-intercept for the line: 3x 4y = 36
- a) $\frac{15}{2}\pi$ c) $\frac{225}{4}\pi$ b) 21 π d) 15 π e)NOTA 12. For real values of x and y, what must always be true for : $y = \sqrt{\frac{x}{2}}$ b) $x \ge y$ c) y≥0 d) $y \ge 1$ e)NOTA a) $y \ge x$ 13. If a + b = -13 and b = 12, find a - b: a) -25 b) -37 c) 3 d) 37 e)NOTA

14. In isosceles trapezoid ABCD, base angles A and D have a sum of 157 degrees. What must be true?

a) angle A = angle B b) angle B + angle C = 180°		c d	c) angle B + angle C = 203° d) angle A + angle B = 90°		e)NOTA	
	5	s of a triangle are show		x 60 10 y		
a)	20	b) 30	c)	60	d) 180	e)NOTA

16. If x and y are integers and x > 0 and y < 0 what must be true?

- a) x + y > 0 b) x y < 0 c) y x > 0 d) y x < 0 e)NOTA
- 17. The sides of a convex regular polygon are all some odd integer amount. If the perimeter is an even value, how many sides might the shape have?
- a) 2 b) 3 c) 4 d) 5 e)NOTA

18. A football is thrown such that its height is given by the equation: $h = -\frac{1}{2}t^2 + 6t + 5$. If h represents height in feet and t represents time in seconds, find the height of the ball after 8 seconds

- a) 21 ft. b) 45 ft. c) 49 ft. d) 15 ft. e) NOTA
- 19. Three number cubes are rolled at the same time. Find the probability that the numbers 1 and 2 and 3 are rolled. Order does not matter.
- a) $\frac{1}{3}$ b) $\frac{1}{216}$ c) $\frac{1}{18}$ d) $\frac{1}{36}$ e)NOTA

20. If \triangle ABC ~ \triangle LM find the perimeter		$A \xrightarrow{9} B$	М			
a) 22 units	b) 42.5 units	c) 37 units	d) 47.5 units	e)NOTA		
21. A circle with a radius of 5 units is drawn such that is crosses the x-axis at (2,0) and (8,0). What point could be the center of the circle?						
a) (4,5)	b) (5,4)	c) (5,7)	d) (5,2)	e)NOTA		
22. A restaurant only has tables that seat 2 and tables that seat 4 and tables that seat 6. There are twice as many 4 seaters as there are 2 seaters and there are half as many 6 seaters as there are 2 seaters. What is the total minimum number of tables needed to seat 260 people?						
a) 20	b) 60	c) 22	d) 70	e)NOTA		
23. Three solid metal spheres are melted and formed into one big sphere. If the original spheres had radii of 3 in., 4in, 5 in. Find the radius of the new big sphere.						
a) 6 in.	b) 5.5 in.	c) $6\sqrt{2}$ in.	d) $6\sqrt{3}$ in.	e)NOTA		
24. How many diagonals does a regular octagon have?						

- a) 40 b) 64 c) 80 d) 20 e)NOTA
- 25. A truck must go over a steep hill. The truck drives 2 miles up one side at 10 mph and 2 miles down the other side at 40 mph. Find the truck's average speed to go over the hill.
- a) 12.5 mph b) 25 mph c) 16 mph d) 50 mph e)NOTA

- TB1: Find the average of the quantities: 4x, 3x + 2, 10 and 9x TB2: Find $\frac{1}{3}$ % of 330. TB3: The average of 6 numbers is 12. Find the sum of those 6 numbers.