2010 Vestavia Hills High School
 Mathematics Tournament Comprehensive Written Examination

1. Find the volume of the solid formed by revolving the region enclosed by the ellipse $9 x^{2}+18 y^{2}=18$ about the x-axis.
A. $\frac{4 \sqrt{2}}{3} \pi$
B. 2π
C. 18π
D. $\frac{2 \sqrt{2}}{3} \pi$
E. NOTA
2. If two of the roots of $x^{4}+a x^{3}+b x^{2}+c x+d=0$ are $1+i$ and $2-\sqrt{3}$ for all real a, b, c, d, then what is $a+c$?
A. -16
B. -12
C. 6
D. 4
E. NOTA
3. How many ways can Jennifer divide up her 20 dumplings among her 5 friends if each friend must have at least two pieces?
A. 252
B. 1001
C. 3003
D. 5040
E. NOTA
4. Simplify $\sum_{j=0}^{k} \sum_{a=0}^{j} a^{a}$.
A. $2^{k+2}-2-k$
B. $2^{k+3}-2^{k}+k$
C. $2^{k+2}-3-k$
D. $2^{k}+2-k$
E. NOTA
5. Find the area of the triangle with vertices $(0,0,0),(5,7,4)$, and $(7,0,8)$. Answers are in square units.
A. 37
B. 75
C. 25
D. 42
E. NOTA
6. Find the area of the graph bound by the locus of points in which the sum of the distances to the points $(1,2)$ and $(7,10)$ is 26.
A. 130π
B. 156π
C. 169π
D. 260π
E. NOTA
7. Simplify $\sqrt{\tan ^{2} x+8 \cos ^{2} x-3+(2 \sin x+2 \cos x)(2 \sin x-2 \cos x)}$.
A. $\sin x$
B. $\cos x$
C. $\sec x$
D. $\csc x$
E. NOTA
8. If $f(x)$ is the remainder when $x^{2010}-3 x+4$ is divided by $x^{2}-6 x+8$, find the remainder when $f(8)$ is divided by 16 .
A. 0
B. 1
C. 8
D. 13
E. NOTA
9. Suyoung loves the K-Pop group Girls' Generation. His chances of ever meeting them is determined by the function $\frac{1}{2}(1+2 x)^{\frac{1}{3 \ln x}}$, where x is the numerical quantity of his obsession and $x \geq 9$. If his obsession is infinite, what is the probability that he will meet them?
A. 1
B. $\frac{1}{6}$
C. $\frac{\sqrt[3]{e}}{2}$
D. $\frac{e}{2}$
E. NOTA
10. A circle has a diameter with endpoints at $(1,0)$ and $(b, 0)$, where $b>1$. A tangent to the circle has equation $y=\frac{4}{3} x$. Find the value of b.
A. 4
B. 5
C. 9
D. 11
E. NOTA
11. Find the product of the solutions to $x^{1+\log _{3} x}=729$.
A. $\frac{1}{3}$
B. 1
C. 3
D. 9
E. NOTA
12. Find the sum of the solutions to $|x+1|+|x-3|=|x+2|$.
A. -2
B. 0
C. 4
D. 6
E. NOTA
13. Simplify $\sqrt{(111,111,111,111)(1,000,000,000,005)+1}$.
A. $333,333,333,335$
B. $333,333,333,3332$
C. $333,333,333,334$
D. $333,333,333,333$
E. NOTA
14. In the $x y$-plane, consider the L -shaped region bounded by the x - and y - axes with vertices at $(0,0),(0,3),(3,3),(3,1)$, $(5,1)$, and $(5,0)$. Find the slope of the line through the origin that divides the area of this region exactly in half.
A. $\frac{2}{7}$
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. $\frac{7}{9}$
E. NOTA
15. What shape is formed by the polar equation $r=2010+2010 \sin \theta$?
A. cardioid
B. circle
C. rose
D. hyperbola
E. NOTA
16. Find the length of $\overline{B F}$, given that $B C=4, A E=5, E C=3, A F=4$, and $\overline{A D}$ is a median to $\overline{B C}$.
A. $\frac{12}{5}$
B. $\frac{8}{3}$
C. $\frac{5}{2}$
D. 3
E. NOTA

17. A trapezoid is formed from the points on the graph of $y=\frac{2}{x}$ and $y=-\frac{1}{x^{3}}$, and their respective tangent lines to the y-axis. Find its area as x approaches infinity.
A. 0
B. $\frac{3}{2}$
C. 3
D. $\frac{5}{2}$
E. NOTA
18. If the solution to $3 x^{2}+y^{2}+z^{2}=2 x(y+z)$ is the ordered triple (a, b, c), find the sum of a, b, and c.
A. 0
B. 1
C. 2
D. 3
E. NOTA
19. Evaluate for $n=20102010$: $\left\lfloor\sqrt{n^{2}-16 n+69}\right\rfloor$.
A. 20102010
B. 20101994
C. 20102002
D. 20102079
E. NOTA
20. How many digits are in x if $\sum_{n=0}^{1005}\binom{2010}{2 n}=x$?
A. 605
B. 958
C. 604
D. 959
E. NOTA
21. A rectangular piece of paper 8 inches wide is folded as in the diagram so that one corner touches the opposite side. Find the length of the crease L in terms of the angle θ.
A. $8 \sin \theta \sec \theta$
B. $4 \csc \theta \sec ^{2} \theta$
C. $4 \sec \theta \csc \theta$
D. $6 \sec \theta \csc ^{2} \theta$
E. NOTA
22. Find the value of $i \ln \left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)$.

8

A. 0
B. π
C. $-\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$
E. NOTA
23. How many triangles with positive area are there whose vertices are points in the $x y$-plane and whose coordinates are integers satisfying $1 \leq x \leq 4$ and $1 \leq x \leq 4$?
A. 496
B. 560
C. 512
D. 516
E. NOTA
24. In base R_{1}, the expanded fraction F_{1} is $0 . \overline{37}$ and the expanded fraction F_{2} is $0 . \overline{73}$. In base R_{2}, the fraction F_{1} is $0 . \overline{25}$ while F_{2} is $0 . \overline{52}$. What is the sum of R_{1} and R_{2} in base 10 ?
A. 22
B. 21
C. 20
D. 19
E. NOTA
25. What are the last two digits of 2^{2010} ?
A. 24
B. 44
C. 64
D. 94
E. NOTA

PLEASE WRITE YOUR NAME, COMPLETE SCHOOL NAME, AND TIE-BREAKER ANSWERS ON THE BACK OF THE SCANTRON FORM. DENOTE EACH TIEBREAKER AS T1, T2, AND T3.

T1. The solutions to $3^{2 x}-7 \bullet 3^{x}+10=0$ are $\log _{3} A$ and $\log _{3} B$, where $A>B$. Find B.

T2. What x-value on the graph of $y=\sqrt{\ln x}$ is closest to $(4,0)$?

T3. An ant is walking along the edges of triangle $A B C$. It starts at vertex A and walks along 10 edges before it stops. What is the probability that the ant stops at vertex A ?

