2009 Hoover HS Math Tournament
 Pre-Algebra Written Test

1. A hiker leaves camp heading due north at 8 mph . After 45 minutes he turns and heads due east at 3 mph . After 20 minutes of walking east he stops, turns and heads straight toward camp. How many miles is the walk back to camp?
a) $\sqrt{37}$
b) 37
c) 7
d) 11
e)NOTA
2. If $\mathrm{a}=3 / 4$ and $\mathrm{b}=4 / 3$ then $(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{a})=$?
a) $\frac{-25}{144}$
b) $\frac{49}{144}$
c) $\frac{-49}{144}$
d) $\frac{7}{12}$
e)NOTA
3. A class of 14 boys and 8 girls receives some new girl students. If the class is now 65% girls, how many girls were added?
a) 16
b) 26
c) 14
d) 18
e)NOTA
4. A tractor has 4 foot diameter tires at the rear and 2 foot diameter tires at the front. As the tractor moves, how many times do the front tires rotate compared to one rotation of the rear?
a) $1 / 2$ rotation
b) 6 rotations
c) $1 / 4$ rotation
d) 2 rotations
e)NOTA
5. In the shape, if $y=55$ degrees, find x.

a) 55^{0}
b) 250°
c) 62.5^{0}
d) 125^{0}
e)NOTA
6. If 25% of W is 40% of K , then W is what percent of K ?
a) 130%
b) 160%
c) 65%
d) 15%
e)NOTA
7. Solve for $x: 3 x-3(3 x-3)=33$
a) 3
b) 1
c) -4
d) 8
e)NOTA
8. If a and b are both integers and $\mathrm{a} \neq \mathrm{b}$, then which of the following cannot be true?
a) $a-b=0$
b) $a+b=0$
c) $a+b=1$
d) $\mathrm{a}-\mathrm{b}=1$
e) NOTA
9. The average of Paul's 5 test grades is a 78%. What does Paul need to make on his $6^{\text {th }}$ test to have an 80% test average?
a) 100%
b) 82%
c) 86%
d) 90%
e)NOTA
10. The average of x, y and z is x. Find the average of y and z.
a) x
b) $\frac{y z}{2}$
c) z
d) $2 x$
e)NOTA
11. How many seconds longer is 20% of an hour than 30% of a minute?
a) 50 seconds
b) 54 seconds
c) 18 seconds
d) 30 seconds
e)NOTA
12. Quadrilateral ABCD has vertices $\mathrm{A}(4,-3), \mathrm{B}(1,12), \mathrm{C}(-8,7), \mathrm{D}(-6,8)$. Which vertex is farthest from the origin?
a) A
b) B
c) C
d) D
e)NOTA
13. Three squares are placed side by side as shown. The squares have sides of $1 \mathrm{~cm}, 2 \mathrm{~cm}$ and 3 cm . Find the area of the shaded region.
a) $5 \mathrm{~cm}^{2}$
b) $3 \mathrm{~cm}^{2}$
c) $2.75 \mathrm{~cm}^{2}$
d) $6 \mathrm{~cm}^{2}$
e)NOTA
14. A cab driver charges a flat rate of $\$ 1.50$ plus $\$ 2$ each half mile. If a ride costs $\$ 32.25$, how far was the ride?
a) $16 \frac{1}{10}$ miles
b) $15 \frac{3}{8}$ miles
c) $7 \frac{1}{2}$ miles
d) $7 \frac{11}{16}$ miles
e)NOTA
15. If $\sum_{n=2}^{5} n$ means $2+3+4+5$, find the value of $\sum_{n=3}^{7} n$.
a) 25
b) 37
c) 21
d) 15
e)NOTA
16. Find the value of $n: 5^{n}+5^{n}+5^{n}+5^{n}+5^{n}=5^{5}$
a) 1
b) 2
c) 4
d) 5
e)NOTA
17. Find the area of the square if the shaded region has an area of 27.2 units 2.

a) 81.6 units 2
b) 13.6 units 2
c) 54.4 units 2
d) 27.2 units 2
e)NOTA
18. What are the odds of getting Mrs. Nicehair for math if 25% students get her for math?
a) 3 to 4
b) 1 to 4
c) 2 to 3
d) 1 to 3
e) NOTA
19. The line $y=2 x+14$ is drawn such that it overlaps a diagonal of a square. Which of the following could be the equation of the line that overlaps the other diagonal?
a) $y=2 x-14$
b) $y=-2 x+14$
c) $y=1 / 2 x-14$
d) $y=-1 / 2 x+14$
e)NOTA
20. The graph of the polynomial function, $f(x)=-23 x^{4}-12 x^{2}+2 x-16$ crosses the y-axis at which point?
a) $(-23,0)$
b) $(0,-12)$
c) $(-16,0)$
d) $(0,-16)$
e)NOTA
21. How many ways can a single straight line be drawn to divide a square into two shapes with equal areas?
a) 2
b) 3
c) 4
d) 1
e)NOTA
22. A dog is chained to the corner of an 18 ft . by 18 ft . square barn. The chain is 20 ft . long. If the dog can roam free outside the barn, find the area which the dog can roam in.
a) $302 \pi \mathrm{ft}^{2}$
b) $402 \pi \mathrm{ft}^{2}$
c) $400 \pi \mathrm{ft}^{2}$
d) $301 \pi \mathrm{ft}^{2}$
e)NOTA
23. For the triangle shown, which statement is true?

a) side A is longest
b) side B is shortest
c) side C is longest
d) all sides are equal
e)NOTA
24. Which of the following is equivalent to: $6!\cdot 7!$
a) 10 !
b) 13 !
c) 42 !
d) 8 !
e)NOTA
25. Simplify : $\sqrt{\frac{\left(2 \times 10^{10}\right)\left(6 \times 10^{15}\right)}{1200 \times 10^{3}}}$
a) 1×10^{20}
b) 1×10^{10}
c) 1×10^{5}
d) 1×10^{4}
e)NOTA

TB1 What is the ten thousandths place value of π ?
TB2 Find the sum of the integers from 100-200 inclusive.
TB3 What percent, rounded to the nearest whole number, of the letters of this sentence are vowels?

