1. Let $A=$ the number of days in four consecutive years and $B=$ the number of hours in the last three months of the year. What is $A+B$?
A. 3644
B. 3645
C. 3668
D. 3669
E. NOTA
2. Solve for $x: 20_{6}+17_{8}+8-40_{5}=x_{10}$.
A. 15
B. 55
C. 191
D. -5
E. NOTA
3. Which of the following describes the solutions of the quadratic $6 x^{2}+25 x-17=0$?
A. Two imaginary solutions
B. One real solution; One imaginary solution
C. One double root real solution
D. Two distinct real solutions
E. NOTA
4. How many ways are there to arrange the letters in the word MISSISSIPPI?
A. 34,550
B. 34,650
C. 69,300
D. 138,600
E. NOTA
5. Assuming all numbers are positive, natural numbers, determine the number of elements in the $\operatorname{set}(A \cap B) \cup C$ given the following:
$A=\{$ prime numbers less than 100$\}$
$B=\{$ odd numbers less than 100 $\}$
$C=\{$ multiples of 7 less than 100 $\}$
A. 35
B. 36
C. 37
D. 38
E. NOTA
6. What is the solution (x, y, z) of the system of equations below?

$$
\begin{gathered}
x+y+2 z=-1 \\
x-2 y+z=0 \\
3 x+y-2 z=5
\end{gathered}
$$

A. $(-1,0,1)$
B. $(1,0,-1)$
C. $(1,0,2)$
D. $(2,0,1)$
E. NOTA
7. Dale and Della are making Kool-Aid. Dale mixes a 20-ounce drink composed of 25% sugar while Della mixes an 18 -ounce drink with 30% sugar. If the two drinks are combined, what percent (rounded to the nearest percent) of the new mixture is composed of sugar?
A. 26%
B. 27%
C. 28%
D. 29%
E. NOTA
8. Find the units digit of $(867)^{5309}$.
A. 1
B. 3
C. 7
D. 9
E. NOTA
9. Factor completely: $49 j^{2}-k^{2}+12 k-36$
A. $(7 j-k-6)^{2}$
B. $(7 j+k+6)^{2}$
C. $(7 j+k-6)^{2}$
D. $(7 j+k-6)(7 j-k+6)$
E. NOTA
10. Bert, Burt, and Belle are professional elephant manicurists. Bert can manicure an elephant toe in 5 minutes, Burt can manicure an elephant toe in 8 minutes, and Belle can manicure an elephant toe in 5 minutes. How long, to the nearest minute, would it take the three of them working together to manicure five elephant toes?
A. 9
B. 10
C. 11
D. 12
E. NOTA
11. Della bought a custom charm bracelet with eight charms. If the bracelet has no clasp, in how many ways can she arrange the charms on the bracelet?
A. 2520
B. 5040
C. 10,080
D. 13,440
E. NOTA
12. What is the equation of the line formed by reflecting the line shown below over the line $y=x$?

A. $y=4 x-3$
B. $y=\frac{1}{4} x+\frac{3}{4}$
C. $y=-4 x-3$
D. $y=\frac{3}{4} x+\frac{1}{4}$
E. NOTA
13. Find $A+B+C+D-E$ if each letter represents a distinct digit from 0 to 9 and the following is true.

$$
\begin{array}{r}
\\
\\
\\
+ \\
\\
C
\end{array} \quad A \quad D \quad A
$$

A. 0
B. 7
C. 11
D. 21
E. NOTA
14. Find the area enclosed by the x-axis, $x \leq 8$, and $y \geq-2 x+7$.
A. $\frac{81}{2}$
B. 27
C. $\frac{81}{4}$
D. $\frac{81}{8}$
E. NOTA
15. Solve the inequality: $|x-3| \geq|2 x+1|$.
A. $-\frac{2}{3}<x<4$
B. $-4<x \leq \frac{2}{3}$
C. $-4 \leq x \leq \frac{2}{3}$
D. $-\frac{2}{3} \leq x<4$
E. NOTA
16. What is the product of the values x and y that solve the following matrix equation?

$$
\left[\begin{array}{c}
3 x+4 \\
11
\end{array}\right]=\left[\begin{array}{c}
-8 \\
5-3 y
\end{array}\right]
$$

A. -8
B. 8
C. $\frac{68}{9}$
D. $-\frac{68}{9}$
E. NOTA
17. Simplify: $\sqrt{6+\sqrt{6+\sqrt{6+\ldots}}}$.
A. 2
B. 3
C. 6
D. $2 \sqrt{2}$
E. NOTA
18. How many positive, integral factors does the number 7429 have?
A. 8
B. 9
C. 16
D. 17
E. NOTA
19. Factor completely: $x^{3}+6 x^{2}-x-30$.
A. $(x-3)(x+2)(x+5)$
B. $(x+3)(x-2)(x+5)$
C. $(x+3)(x+2)(x-5)$
D. $(x+3)(x+6)\left(x^{2}-1\right)$
E. NOTA

Algebra I
VHHS 2008
20. Debbie begins working on a test at 12:04 and finished the test a few minutes later at 12:26. By how many degrees has the distance between the minute hand and the hour hand increased during this time interval? Assume the smallest angle formed in your calculations.
A. 81°
B. 121°
C. 132°
D. 143°
E. NOTA
21. The graph below shows the price of a certain stock over a ten month period. Define z as the change in price of the stock over a given interval. Which of the intervals does the magnitude of z change the most?

A. Month 0 to Month 2
B. Month 2 to Month 4
C. Month 4 to Month 6
D. Month 6 to Month 8
E. Month 8 to Month 10
22. If you can only move up or right, in how many ways can you travel from the bottom left-hand corner to the top right-hand corner AND pass through the intersection marked by the giant black circle?

A. 2940
B. 4410
C. 7350
D. 11,760
E. NOTA
23. z varies directly as x and inversely as y and w. When z is $54, x$ is $26, y$ is 2 and w is 7. Find z when x is $117, y$ is 27 and w is 21 .
A. $\frac{378}{13}$
B. $\frac{182}{27}$
C. 6
D. 18
E. NOTA
24. If $f(x)=6 x-7, g(x)=-x^{2}-11$, and $h(x)=x+5$, and if $g(f(h(x)))=-372$, then what are the values of x ?
A. $-\frac{2}{3},-7$
B. $-\frac{1}{3},-\frac{7}{2}$
C. $\frac{2}{3}, 7$
D. $\frac{7}{6},-4$
E. NOTA
25. Billy rides his gas-efficient motor scooter to school everyday in a meandering way. He rides 5 miles north, then 3 miles east, then 6 miles south, then 8 miles west, then 3 miles north, then 10 miles east, then 2 miles west, then 7 miles north, then 15 miles west, then 9 miles south, then 6 miles east, then 4 miles west, then 13 miles south, then 3 miles west, then 4 miles north, then 12 miles east to reach school. If, instead of meandering, Billy rode in a straight line to school, what would be the slope of the line perpendicular to the path?
A. $\frac{1}{9}$
B. 9
C. $-\frac{1}{9}$
D. -9
E. NOTA

TB1 Triangle ABC with vertices $\mathrm{A}(0,1), \mathrm{B}(4,5)$, and $\mathrm{C}(3,0)$ is reflected over the y axis to transform into triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$. What is the distance between B^{\prime} and A ?

TB2 How many times will Monday occur in a leap year that begins on a Sunday?

TB3 Find the value of $\frac{a c}{d e}$ rounded to the nearest whole number given the following:
$a=$ the fifth digit of $л$
$c=$ the units digit of the $15^{\text {th }}$ Fibonacci number
$d=1101_{2}$ in base 10
$e=2.71828182890459023$

