1. If all the curves shown are circles or semicircles, find the shaded area.

A. 40π
B. 24π
C. 16π
D. 32π
E. NOTA
2. $3\left(122^{\circ} 26^{\prime} 18^{\prime \prime}\right)-4\left(91^{\circ} 12^{\prime} 14^{\prime \prime}\right)=$?
A. $124^{\circ} 29^{\prime} 58^{\prime \prime}$
B. $122^{\circ} 30^{\prime} 24^{\prime \prime}$
C. $2^{\circ} 30^{\prime} 24^{\prime \prime}$
D. $2^{\circ} 29^{\prime} 58^{\prime \prime}$
E. NOTA
3. The sum of two angles is 110° while the difference of their complements is 30°. Find measure of the larger \square.
A. 100°
B. 40°
C. 70°
D. 80°
E. NOTA
4. A 10 inch chord of the larger of two concentric circles is tangent to the smaller circle. Find the square of the area of the region that is not shaded.
A. $25 \pi^{2}$
B. $225 \pi^{2}$
C. $625 \pi^{2}$
D. can't be
E. NOTA determined
5. Four points, no three of which are collinear, determine___ line segments
A. eight
B. six
C. five
D. four
E. NOTA
6. Assuming that it always rains when the wind comes from the east, tell which of the following statements is always false.
7. Assumin
following
A. The wind is
in the east;
therefore it is
raining.
8. Assumin
following
A. The wind is
in the east;
therefore it is
raining.
9. Assumin
following
A. The wind is
in the east;
therefore it is
raining.
B. It is raining: therefore the wind is in the east.
C. It is not raining; therefore the
D. The wind is not in
E. NOTA the east; therefore it is not raining.
E. NOTA
wind is not in the east.
raining.
\qquad

10. Altitude $\overline{C D}$ is drawn in $\triangle A B C$. If $\overline{C D}$ bisects the base and $\mathrm{CA}=10$ find CB .
A. 20
B. 15
C. 10
D. 5
E. NOTA
11. If you are asked to construct $\triangle A B C$ given $m \square A=90^{\circ}, \mathrm{a}=5$, and $\mathrm{b}=10$ you will have...
A. no solution
B. one solution
C. two
D. infinite solutions
E. NOTA solutions
12. Given $\overline{B A} \square \overline{D E}$. The $m \square A B C+m \square B C D+m \square C D E=$?

A. 360°
B. 160°
C. 180°
D. 90°
E. NOTA
13. Find the area of the shaded region. The segments that appear to be tangent to the circles are.

A. $32-8 \pi$
B. $128-32 \pi$
C. $131-20 \pi$
D. $192-48 \pi$
E. NOTA
14. Find the resultant of this pair of forces: 30 lbs and 15 pounds acting at 120°
A. $\frac{15 \sqrt{7}}{3} \mathrm{lbs}$
B. $\frac{15 \sqrt{3}}{2} \mathrm{lbs}$
C. $15 \sqrt{7} \mathrm{lbs}$
D. $15 \sqrt{3} \mathrm{lbs}$
E. NOTA
15. Given isosceles trapezoid ABCD with median $\overline{M N}$ that intersects a diagonal in point Q . If $\mathrm{AB}=15$, and $\mathrm{DC}=7, \mathrm{QN}=$?

A. 3.5
B. 4
C. 7.5
D. 11
E. NOTA
16. If $\overline{X A}$ and $\overline{X B}$ are two adjacent sides of a regular polygon, and $m \square A B X$ is one third as large as $m \square A X B$, how many sides does the polygon have?
A. 5
B. 7
C. 8
D. 10
E. NOTA
17. What is the final column of the truth table for

$$
[(p \rightarrow q) \vee(\square q \rightarrow p)] \wedge[\square(p \vee \square q) \rightarrow(\square p \wedge \square q)]
$$

A. TTTT
B. TFTT
C. TTFT
D. TTTF
E. NOTA
15. Angle bisectors $\overline{A F}$ and $\overline{B D}$ are
concurrent with $\overline{E C}$ at point P . If $\mathrm{AE}=\mathrm{z}$,
$\mathrm{DC}=\mathrm{x}, \mathrm{BF}=\mathrm{y}, \mathrm{BE}=2, \quad \mathrm{AD}=3$, and
$\mathrm{FC}=7$, the area of $\triangle A B C$ is 18 and
$\mathrm{PQ}=\frac{4}{3}$, find $\mathrm{x}+\mathrm{y}+\mathrm{z}$.

A. 12
B. 24
C. $61 / 3$
D. 15
E. NOTA
16. In the Venn diagram shown to the right, the universal set U represents Quadrilaterals. What would circle F represent?

A. kites
B. rhombi
C. squares
D. trapezoids
E. NOTA
17. The set of numbers between 0 and 180 inclusive is in one-to one correspondence with the set of rays, in the union of a half-plane and its edge, with end point A in the edge of the half-plane. $\overrightarrow{A J}$ Corresponds to 30 and $\overrightarrow{A M}$ corresponds to $70 . \overrightarrow{A K}$, which bisects $\square J A M$, corresponds to \qquad ?
A. 20
B. 30
C. 40
D. 50
E. NOTA
18. If the chords with measures 6 and 8 are diameters, find the area of the shaded region.

A. 24
B. $\frac{25 \pi}{2}$
C. $\frac{41 \pi}{4}$
D. $\frac{59 \pi}{2}$
E. NOTA
19. Two distinct lines perpendicular to a third line must be \qquad ?
A. skew
B. intersecting
C. parallel
D. perpendicular
E. NOTA
20. Find the area of quadrilateral ABCD if $\overline{A D} \cong \overline{D C}$, $\overline{A B} \perp \overline{B C}, \overline{A D} \perp \overline{D C}$, and diagonal $\overline{B D}$ has length 2 .

A. 2
B. 8
C. $2 \sqrt{2}$
D. $\sqrt{2}$
E. NOTA
21. Given rhombus ABCD with P, Q, and R the midpoints of $\overline{A B}, \overline{B C}$, and $\overline{C D}$ respectively. If the perimeter of ABCD is 40 and $m \square B=120^{\circ}$ what is PD?

A. $10 \sqrt{3}$
B. $5 \sqrt{3}$
C. 10
D. $5 \sqrt{6}$
E. NOTA
22. Given: Circle $\mathrm{O}, m \square A=60^{\circ}$,
$m \square E C F=10^{\circ}, m A F=m F E=40^{\circ}$. What is the $m \square I K O$?

A. 110°
B. 170°
C. 150°
D. 130°
E. NOTA
23. ABCD is a square; Points E, F, G, and H are midpoints; Arc EH is a semicircle and segment GI is a tangent. $\mathrm{DH}=2 \mathrm{EI}=$?

A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{6}}{3}$
C. $\frac{\sqrt{3}}{3}$
D. $\frac{\sqrt{5}}{2}$
E. NOTA
24. A fuel tank is in the shape of a right frustum as shown. Its parallel circular bases have area 36π square feet and 9π square feet respectively. When the fuel tank is half filled as shown, the area of the surface of the fuel (i.e. surface not
 touching tank) is 108 square feet. What is the volume, in cubic feet, of the fuel in the tank?
A. 320π
B. 189π
C. 126π
D. 118π
E. NOTA
25. These two circles are externally tangent to each other and have a common external tangent line with points of tangency P and Q. Point S is the center of the smaller circle and ray ST is tangent to the larger circle. The radii of the circles are R and R-1. If $S T=2 \sqrt{19}$, find the length of the larger radius.
A. $\frac{-1+\sqrt{229}}{3}$
B. $\frac{2+\sqrt{229}}{3}$
C. $\frac{4+\sqrt{241}}{6} 4$
D. $\frac{-2+\sqrt{241}}{6}$
E. NOTA

TB1 The radius of circle P is 5. Point A lies in the interior of circle P . $\mathrm{AB}=11$. Point B must lie \qquad

TB2 If $\overline{J K}$ is a chord of $\square \mathrm{O}$, then $\overrightarrow{J K}$ is a \qquad of \square O. (Must be spelled correctly)

TB3 What is the final column of a tautology truth table?

