2008 Hoover HS Math Tournament Comprehensive Ciphering

Practice: Find the sum of the positive integral factors of 2008.
3780
1.1 If $f(x)=A x^{2}+B x+C$ has a double root, then $\sqrt{\left(\frac{B}{A}\right)\left(\frac{B}{C}\right)}=$? $\quad 2$
1.2 What shape is the graph given by the polar equation $r=\frac{13}{7-3 \cos \theta}$? ellipse
1.3 Find the largest prime in the factorization of $3^{15}-243$. 61
1.4 If $f(x)=\frac{x+4}{x-3}$ and $g(x+2)=6 x+3$, find $f(g(g(3))) . \quad \frac{7}{6}$
1.5 Find the smallest positive integer c such that $\frac{2}{3} c$ and $\frac{3}{2} c$ are both perfect squares. 6
2.1 When the denominator of the fraction $\frac{3-\sqrt{5}+\sqrt{14}}{3+\sqrt{5}+\sqrt{14}}$ is rationalized and the fraction is simplified, what is the denominator's numerical value? 3
2.2 Find the largest real solution to the equation $3 x^{4}+14 x^{3}+23 x^{2}+16 x+4=0 . \quad-\frac{2}{3}$
2.3 In how many zeros does 2008 ! end when written in base 45 ?
2.4 What is the entry in the second row and second column of the inverse of matrix $A=\left[\begin{array}{ccc}7 & 0 & -9 \\ 2 & 5 & -1 \\ -3 & 8 & 1\end{array}\right] ? \quad \frac{5}{47}$
2.5 Find the sum of the positive integer values of n that satisfy the equation $n^{2}(n-1)^{2} \ldots(2)^{2}(1)^{2}-144 n(n-1) \ldots(2)(1)+2880=0 . \quad 9$
3.1 Simplify: $\sqrt{\sum_{i=0}^{2}(i+\sqrt{2})^{2}} \quad 3+\sqrt{2}$
3.2 A hyperbola has foci at the points $(1,4)$ and $(1,-2)$ and asymptotes with slopes of $\pm \sqrt{2}$. If the equation of the hyperbola is given in the form $a(y-b)^{2}-c(x-d)^{2}=1$, with a, b, c, and d real, find $(a+c)(b+d)$.

1
3.3 In how many ways can Ms. Campbell get from point A to point B by moving only to the right, up, 45° down and to the right, or 45° up and to the right? Ms. Campbell cannot stop at the intersection in the center of any of the 6 squares. 63
3.4 Find the infinite sum: $1+\frac{5}{6}+\frac{5}{9}+\frac{17}{54}+\frac{13}{81}+\ldots+\frac{n^{2}+1}{2(3)^{n-1}}+\ldots$ 3

3.5 A convex equiangular hexagon has consecutive sides of length $x, 4,6$, and y. Find the distance between the sides of length x and y. $5 \sqrt{3}$
4.1 Find the smallest positive integer that leaves a remainder of $n-1$ when divided by n for each integer n satisfying $5 \leq n \leq 15$. 360359
4.2

Find the distance between the plane $3 x-2 y+4 z=8$ and the point $(2,-1,3) . \quad \frac{12 \sqrt{29}}{29}$
4.3 Points A, B, and C are the vertices of an equilateral triangle with point C on a circle and side $\overline{A B}$ tangent to the same circle. If the radius of that circle is 3 , then the area of the region inside the intersection of the triangle and the circle is given in the form $a \sqrt{3}+b \pi$, where a and b are real numbers. Find $\frac{a}{b}$. $\frac{3}{2}$
4.4 How many ordered quadruples (x, y, z, w) of nonnegative integers satisfy $x+y+z+w=17$?
4.5 Find the equation of the directrix with larger x-intercept of the hyperbola with equation $5 x^{2}-4 y^{2}+30 x+8 y+21=0$. $x=-\frac{5}{3}$
E. $1 \quad$ The sum $\sum_{k=1}^{n}\left(k^{2}-k\right)$ is equal to $a n^{3}+b n^{2}+c n+d$. Find $\frac{a+b}{c+d}$. -1
E. 2 Find the sum of the solutions to the equation $\sin 3 x \cos 3 x=\frac{1}{4}$ on the interval $[0, \pi) . \quad \frac{5 \pi}{2}$

