Practice: Find the sum of the positive integral factors of 2008.
1.1 How many vertical asymptotes does the function $f(x)=\frac{x^{2}-x-2}{x^{3}-4 x^{2}+x+6}$ have? $\quad 1$
1.2 What 2×2 matrix, when multiplied on the left of any 2×2 matrix A, interchanges the rows of A ? $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
1.3 Find the coefficient of the x^{5} term in the expansion of $(2 x+3)^{9}$. 326592
1.4 Solve the system $\left\{\begin{array}{l}x+y+2 z=1 \\ x+2 y+z=2 . \\ 2 x+y+z=3\end{array} \quad\left(\frac{3}{2}, \frac{1}{2},-\frac{1}{2}\right)\right.$
1.5 How many pairs of numbers have a greatest common divisor of 5 ! and a least common multiple of 10 !?
2.1 A fair, six-sided die has faces numbered $1,2,2,5,7$, and 9 . If this die is rolled three times and the sum of the faces rolled is noted, how many different sums are there? 22
2.2 If a, b, and c are distinct numbers such that $a^{3}+3 a+14=0, b^{3}+3 b+14=0$, and $c^{3}+3 c+14=0$, find $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} . \quad-\frac{3}{14}$
2.3 Find the length of the latus rectum of the ellipse with foci at the points $(2,2)$ and $(-2,2)$ and passing through the point $(3,1) . \quad \frac{\sqrt{26}+5 \sqrt{2}}{3}$
2.4 The cost of manufacturing Durka fudge is $\$ 36$ fixed plus $\$ 7$ per piece. The revenue generated is $\$(x+2)$ for each of x items sold. How many pieces of Durka fudge must be sold to break even (when cost and revenue are equal)? 9
2.5 Find the value of $\left.\left(\left(\left((2008)^{2007}\right)^{2006}\right)^{2005}\right) \ldots\right)^{0}+\left(\left(\left(\left((0)^{1}\right)^{2}\right)^{3}\right) \ldots\right)^{2008}$
3.1 Find the sum: $\frac{2}{3}-\frac{5}{9}+\frac{8}{27}-\frac{11}{81}+\ldots \quad \frac{5}{16}$
3.2 Find the value of x that satisfies $\sqrt{x!(x+1)!}=x(x+1)$. 3
3.3 Find the area of the circle through the points $(10,-2),(1,5)$, and $(6,4) \quad 65 \pi$
3.4 What is the absolute value of the complex number that satisfies $z-3 i=3 z+\bar{z}$, where \bar{z} represents the conjugate of z ? 3
3.5 Find the sum of the squares of the roots of the equation $x^{3}-7 x^{2}+25 x-9=0 . \quad-1$
4.1 Find the values of x in the interval $[0,2 \pi]$ such that $\cos x+1=\sin x . \quad \frac{\pi}{2}, \pi$
4.2 If the probability of being dealt at most three threes in five cards of a standard 52-card deck of cards is given as $\frac{a}{b}$, where a and b are relatively prime, find the value of $b-a .1$
4.3 An increasing sequence of positive integers is defined in the following way: for any term beyond the third term, $a_{n+3}=a_{n}+a_{n+1}+a_{n+2}$. If $a_{10}=392$, what is the value of a_{3} ? 5
4.4 Let $\lfloor x\rfloor=$ the largest integer n such that $n \leq x$. The x-values of the points of intersection of $y=\left\lfloor\left.\frac{\lfloor 3 x\rfloor}{2} \right\rvert\,\right.$ and $y=1-\left|\frac{\lfloor 6 x\rfloor}{2}\right|$ are all real numbers in the interval $a \leq x<0$. Find the numerical value of $a . \quad-\frac{1}{6}$
4.5 Find the smallest positive integer x such that $(2008!)(2007!)(2006!)(2005!) x$ is a perfect square. 251753
E. $1 \quad$ What must x equal if $1+x+x^{2}+x^{3}+\ldots=10 ? \quad \frac{9}{10}$
E. 2 Find the distance between the points (e, \sqrt{e}) and $(1,-\sqrt{e}) . \quad e+1$

