Hoover HS Math Tournament 2008
Algebra I Ciphering

Practice: Solve for x : $\sqrt{3 x+5}-\sqrt{5 x-9}=0$	7
1.1 Simplify $\sqrt{\sqrt[4]{z}}$ and leave in exponential form.	$z^{\frac{1}{8}}$
1.2 Simplify $\left(\frac{25 x^{-\frac{2}{3}}}{y^{\frac{2}{3}}}\right)^{-\frac{3}{2}}$	$\frac{x y}{125}$
1.3 The point $(2,-1)$ is reflected across the x-axis, and then reflected across the y-axis. State the coordinates of the point after the final reflection.	$(-2,1)$
1.4 Simplify: $\sqrt[5]{1024^{3}}$	64
1.5 Solve for x if $\sqrt{x+2}=-1-\sqrt{2 x-3}$	\varnothing
2.1 Solve for x : $\frac{1}{3} x-\frac{1}{5} x=1+\frac{1}{10} x$	30
2.2 Solve $x^{-\frac{2}{3}}=\frac{1}{9}$	$\mathrm{x}=27$
2.3 Simplify $\frac{x+1}{1+\frac{1}{x}}$	X
2.4 Solve the following equation for a: $\frac{a^{2}}{a-15}-\frac{225}{a-15}=a$	\varnothing
2.5 Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are collinear, in the order named, so that $\mathrm{AB}=3 \mathrm{BC} \& \mathrm{BC}=2 \mathrm{CD}$. What is the ratio of BD to AD ?	$\frac{1}{3}$
3.1 Simplify $\frac{\sqrt{x^{3}}}{\sqrt[3]{x^{2}}}$ and leave in radical form.	$\sqrt[6]{x^{5}}$
3.2 The sum of three numbers is 98 . The first number is $\frac{2}{3}$ of the second, and the second is $\frac{5}{8}$ of the third. What is the second number?	30
3.3 Find the sum of $\left[\begin{array}{l}3 \\ 4 \\ 7\end{array}\right]$ and the additive inverse of $\left[\begin{array}{c}-2 \\ 0 \\ 5\end{array}\right]$	$\left[\begin{array}{l}5 \\ 4 \\ 2\end{array}\right]$
3.4 Solve for x if $9^{2}+7^{x}=\frac{1}{49}+\sqrt{\left(\frac{1}{9}\right)^{-4}}$	$\mathrm{x}=-2$
3.5 Simplify $\frac{x^{2}+x y}{x-x^{2}} \div \frac{x z+z y}{x z-z}$	-1
4.1 Convert into the form $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$ where $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ are relatively prime integers and the coefficient of x is positive. $\quad y-1=-\frac{1}{2}(x-1)$	$x+2 y=3$

Algebra I Ciphering

4.2 Find the area of a region defined by the system of inequalitities: $y+x \leq 3, y-x \leq 3$, and $y \geq-1$.	16
4.3 Find the slope of a line perpendicular to the line that passes through $(-3,2)$ and $(5,-1)$	$\frac{8}{3}$
4.4 Solve for K if $\frac{1}{2}$ is a root of $2 x^{2}+11 x=-K$	-6
4.5 The sum of the reciprocals of 2 consecutive odd integers is $\frac{16}{63}$. Find the integers.	$7 \& 9$
E 1. Find the sum of y-coordinates of $f \circ g$. If $f(x)=(1,2),(3,-4),(2,7)$ and $g(x)=(2,1),(5,2),(-2,3)$.	5
E 2. What is the absolute value of the difference of the zeroes of $9 x^{2}-2=3 x ?$	1

