2007 Hoover High School Mathematics Tournament Algebra 2 Written Test | 1. Find the value(s) of x that satisfy the equation $\log x + \log(x-2) = \log(x^2-2x)$. | | | | | | | |---|--|---------------------------------|--|---|---|-------------| | A) $x > 2$ | B) $0 < x < 2$ | C) $x < 0$ | D) all real number | ers | E) NOTA | | | 2. Solve for x : | $\frac{136x^3 - 1088}{8x - 16} = 0$ | | | | | | | A) 2 | 8x - 16
B) $2, -1 \pm \sqrt{3}i$ | C) -1± | $\sqrt{3}i$ | D) no so | lutions E | NOTA | | | | | ints will Elizabeth | | en scores three point
en their scores are fir
A | | | 4. Find the constant term in the expansion of $\left(x^8 - \frac{2}{x^6}\right)^7$ | | | | | | | | A) -35 | B) 35 | C) -560 | D) 560 | E) NOT | A | | | 5. Simplify: $(\csc \theta - \cot \theta)(\csc \theta + \cot \theta)$ | | | | | | | | A) 1 | B) $\tan^2 \theta$ | C) $1 + \sin \theta$ | D) $\frac{1+\cos\theta}{2}$ | E) NOT | A | | | 6. Ankita's water heater needs repair. The repairman says it will cost \$300 to fix the unit, which currently costs \$75 per year to operate. Ankita could buy a new energy-saving water heater for \$525, including installation, and the new water heater would save 60% on annual operating costs. After how many years would the new water heater pay for itself? | | | | | | | | A) 5 years | B) 4.5 years | C) 4 years | D) 5.5 years | E) NOT | `A | | | | n has no solution? B) $\begin{cases} 3x \\ y \end{cases}$ | = 12 - y $-6x = 8$ | C) $\begin{cases} x - 7 = -3y \\ 3y = x + 9 \end{cases}$ | | D) $\begin{cases} 9y = 3x + 3 \\ 3y - 2x = 9 \end{cases}$ | E) NOTA | | 8. A license plate consists of three letters followed by three numbers, all of which are different. Find the probability that when you apply for a license plate, you receive one with only odd digits. | | | | | | | | A) $\frac{1}{8}$ | B) $\frac{1}{18}$ | C) $\frac{1}{16}$ | D) $\frac{1}{12}$ | E) NOT | 'A | : | | Leandra like | | etter than its oran | | | , and 0.6 is the proba
fall asleep in class, v | | | A) 0.6 | B) 0.8 | C) 0.48 | D) 0.2 | E) NOT | `* | | | | | | | | uestion was purely hy | | | What is the A) 60 | product of the real B) -60 | l values of x in the C) 12 | e equation $x^3 + 7x$
D) 15 | + 11x² +
E) NOT | $-13x^2 + 28x - 60 = 0$ A | ? : | | 11. Find the sur | n of the following | series, assuming it | t exists: $\frac{z^2}{y\sqrt{x}} + \frac{z^2}{y^3}$ | $\frac{z^6}{x^{1.5}} + \frac{z^{11}}{y^5 x^{11}}$ | $\frac{z^{4n-2}}{y^{2n-1}x^{n-0.5}} + \dots + \frac{z^{4n-2}}{y^{2n-1}x^{n-0.5}} + \dots$ | ;
;
; | | $A) \frac{xyz^2}{y^2\sqrt{x}-z}$ | $B) \frac{yz^2 \sqrt{x}}{xy^2 - z^4}$ | $C) \frac{yz^4\sqrt{x}}{xy^2}$ | $D) \frac{xyz^4}{xy^2 - z^2}$ | E) NOT | ` A | : | 24. If (-4,-5) is the focus with smaller y -value of the conic section given by the equation $\frac{(y-1)^2}{Z} - \frac{(x+4)^2}{16} = 1$, where Z > 0, find the vertex with the larger ν -value. A) (-4,5) B) (-4,7) C) $\left(-4, 1+2\sqrt{5}\right)$ D) $\left(-4, -7+2\sqrt{5}\right)$ 25. Alex noticed that $X = \frac{i}{2007} \frac{i!}{2007!}$ is a positive integer. If x_k is the remainder when X is divided by k, find $\sum_{a=2008}^{2013} x_a$. A) 3 B) 2007 C) 2020 D) 3989 E) NOTA **Tiebreakers** - TB1. Rudy & Tucker are wrestling; the probability that Rudy wins is $\frac{1}{e}$, and the probability that Tucker wins is $\frac{1}{\pi}$. Only one dog can win. What is the probability that neither wins? - TB2. The 15th, 16th, and 17th decimal place digits of π add up to the 18th digit. In addition, the 19th digit, 4, is half the 18th digit. The 15th digit equals the 17th digit, and any two of the 15th through 17th digits have a sum larger than the remaining third digit of the group. What is the three-digit number made up of the 15th through 17th digits of π ? - TB3. You get this one free if you just write the word BLINDDARMENTZÜNDUNG, complete with umlaut and in all capitals and spelled correctly.