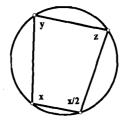
2006 Hoover HS Math Tournament Geometry Ciphering

1.1 In the following figure \overline{AC} is a diameter of the circle, $m\angle ADB = 90^\circ$, and CD = 1. If BD = h, which segment on the figure has length h^2 . Ans: AD

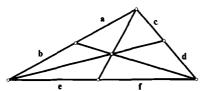
1.2 In the following, the variables represent angle measurements. Find $y - \frac{z}{2}$. Ans: 90°



- 1.3 A sphere of radius r < 1 is concentric with a sphere of radius 1, and the volume of the region between the spheres is $\frac{\pi}{3}$. Find r. Ans: $\frac{\sqrt[3]{6}}{2}$
- 1.4 In the following figure there is an equilateral triangle inscribed in a circle. The sides of the triangle have length 6. The region between the triangle and the circle consists of 3 congruent regions. Find the area of one of these regions. Ans: $4\pi 3\sqrt{3}$

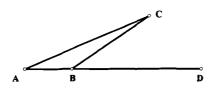
- 1.5 Let A be the set of whole numbers "x" with the property that there exists two tangent circles and a line (all coplanar) so that the line intersects the union of the circles in exactly "x" points. How many elements are in set A? Ans: 5
- 2.1 In the following figure the variables represent the lengths of the segments as indicated. Suppose $\frac{a}{b} = \frac{c}{d}$.

Find $\frac{e}{f}$. Ans: 1

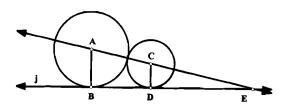


2.2 In the following figure, AB = 1, BC = 5, and $m \angle CBD = 30^{\circ}$. Find the area of $\triangle ABC$.

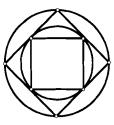
Ans: $\frac{5}{4}$



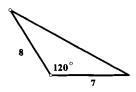
2.3 In the following figure the two circles are tangent, the line j is tangent to both circles, AB = 4, and CD = 1. Also the centers of the circles are A and C. Find AE. Ans: $\frac{20}{3}$



2.4 The following figure shows a square inscribed in a circle, which is inscribed in a square, which is (in turn) inscribed in a circle. If the area of the larger circle is 1, find the area of the smaller square. Ans: $\frac{1}{\pi}$

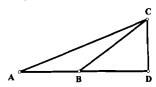


2.5 Find the area. Ans: $14\sqrt{3}$



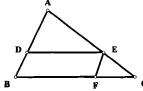
- 3.1 Suppose a triangle with sides 12, 16, and 20 is inscribed in a circle. Find the area of the circle. Ans: 100π
- 3.2 Suppose two circles of radius 1 are coplanar and intersect. Suppose further that the intersection of the two interiors has a boundary with a perimeter of $\frac{2\pi}{3}$. How far apart are the centers of the two circles? Ans: $\sqrt{3}$
- 3.3 Find a > 0 so that (0,0,0) is a distance 1 from the plane passing through (a,0,0), (0,a,0), and (0,0,2a).

 Ans: $\frac{3}{2}$
- 3.4 In the figure AC = 5, AB = 2, $m \angle ADC = 90^{\circ}$, and the area of $\triangle ABC$ is 3. Find BD. Ans: 2

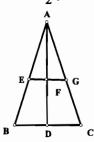


3.5 In the following figure, $\angle ACB = 115^{\circ}$, AC = AD, and $\frac{AD}{CD} = \frac{AB}{CB}$. Find $m \angle BAC$. Ans: 50

- 4.1 Find the distance from (1,0) to the line with the equation $y = \sqrt{3}x$. Ans: $\frac{\sqrt{3}}{2}$
- 4.2 In the following figure, $\triangle ABC$ has area 42, \overline{DE} is parallel to \overline{BC} , \overline{EF} is parallel to \overline{AB} , and AD = 2DB. Find the area of $\triangle EFC$. Ans: $\frac{14}{3}$



4.3 In the following figure, AB = AC, BD = DC, AD = 1, and \overline{EG} is parallel to \overline{BC} . Also, assume that the area of $\triangle AEG$ is one-half that of $\triangle ABC$. Find DF. Ans: $\frac{1}{2}(2-\sqrt{2})$



- 4.4 The area of the circle of intersection of two spheres of radius 1 is $\frac{\pi}{4}$. Find the distance between the centers of the spheres. Ans: $\sqrt{3}$
- 4.5 The base of a prism consists of *n* contiguous isosceles triangles, each with a height of 1 and the two congruent sides $\frac{3}{2}$. If the height of the prism is *n*, and the volume of the prism is $8\sqrt{5}$, find *n*. Ans: 4