2006 Hoover HS Math Tournament
 Algebra I Ciphering

Practice: Simplify: $\left[\left(m^{-2}\right)\left(n^{-6}\right)\right]^{\frac{1}{2}} \frac{1}{m n^{3}}$
1.1 The sum of an integer and its square is 240 . Find the positive integer. 15
1.2 Solve. $\frac{3 x}{2}+\frac{5 x}{3}-\frac{13 x}{6}-\frac{2}{3}=\frac{5}{6} \quad \frac{3}{2}$
1.3 What is the remainder of $\frac{a^{3}+1}{a+1}$? 0
1.4 Louise can trim the shrubbery in 6 hours working alone. Her father can do it in 5 hours. They worked together until dinner but trimmed only $\frac{11}{15}$ of the shrubbery. How long did they work? 2 hours
1.5 Simplify $\frac{1}{(a-b)(a-c)}+\frac{1}{(b-c)(b-a)}+\frac{1}{(c-a)(c-b)}$

0
2.1 For the sequence, find the next three terms: $3,7,15,31, \ldots \quad 63,127,255$
2.2 Simplify: $9^{\frac{3}{2}}+4^{\frac{-1}{2}}=\frac{55}{2}$
2.3 Solve for x : $30-4 x-\pi x=0 \quad \frac{30}{4+\pi}$
2.4 Find $\left(2 n^{3}\right)^{2}$ if $(n+2)(n+3)=(4-n)(12-n) \quad 256$
2.5 Given the equation of the line in standard form, find the sum of the intercepts. $\frac{1}{2} x-3 y=-16 \quad-\frac{80}{3}$
$3.1 \quad$ Simplify. $\frac{(-8)^{-2}\left(8-8^{0}\right)}{2^{-6}} \quad 7$
3.2 If $g(x)=\frac{x^{2}-7 x+10}{x-5}$, find $\frac{g(1)+g(-2)}{g(-1)} \quad \frac{5}{3}$
3.3 Find the area of the shape enclosed by the x-axis, the y-axis and the line $2 x+3 y=7 \quad \frac{49}{12}$
3.4 Simplify: $3 x\left(4 x^{2} x\right)^{3}\left(\frac{1}{2} x^{3}\right)^{2} \quad 48 x^{16}$
3.5 Solve for $x . \quad \frac{x^{2}}{x+2}+\frac{2 x}{x+2}=-x \quad 0$
4.1 Combine like terms: $3 \sqrt{\frac{3}{5}}-5 \sqrt{15}+\sqrt{60} \quad \frac{-12 \sqrt{15}}{5}$
4.2 The greater of the two consecutive integers is 10 more than twice the lesser. Find the greater integer. -8
4.3 Simplify: $-\left\{-\left[-\left(-(-(-3))^{2}\right)^{3}\right]\right\} \quad 729$
4.4 If $w=\sin ^{2} \theta+\cos ^{2} \theta$ and $\sin ^{2} \theta=1-\cos ^{2} \theta$. Find $\frac{3 w}{2}$. $\frac{3}{2}$
4.5 Three numbers who sum is 230 are in the ratio 2:5:3. What is the median number? 69
E. 1 Write as one fraction: $1+\frac{3}{x-5} \quad \frac{x-2}{x-5}$
E. 2 Simplify. $\left[(2 x-1)^{2}-1\right]^{2} \quad 16 x^{4}-32 x^{3}+16 x^{2}$

