1.1 A cone of height 10 is inscribed in a sphere of radius 8 . What is the area of its base? Ans: 60π 1.2 Find the distance from point $(1,1)$ to the line $y=\frac{2-x}{4} \quad$ Simplify your answer.

Ans: $\frac{3 \sqrt{17}}{17}$
1.3 Find x in the following figure.

Ans: $\sqrt{5}$

1.4 The length of the arc of the circle with radius r, that is above the line $y=a$ is exactly one quarter the circumference of the circle. Find a / r

1.5 A circle with radius of 10 and center $(0,0)$ is intersected by the line $x=5$ at points P and Q. At what point will the lines tangent to the circle at P and Q cross each other?

Ans: $(20,0)$

$2.1 A^{\prime}, B^{\prime}, C^{\prime}$ are midpoints. The area of triangle $A B C$ is 10.
Find the area of triangle $A^{\prime} B^{\prime} C^{\prime}$
Ans: $\frac{5}{2}$
C

2.2 Find the area of the trapezoid
 inscribed in circle O.
2.3 Let S_{1} be the sphere centered at A with radius 2 , and let S_{2} be the sphere centered at C with radius 2 . Find the area of the circle of intersection between the two spheres.

Ans: 3π
2.4 If the length, width, and space diagonal of a right rectangular prism are 6,8 , and 12 respectively, find the height of the prism.

Ans: $2 \sqrt{11}$
2.5 In the following figure, assume $\overline{A C}$ is a diameter of the circle. Find h in terms of x, if $h \perp \overline{A C}$.

Ans: \sqrt{x}
3.1 A, B, and C are points on a circle of radius ten. $\mathrm{AB}=20, \mathrm{AC}=10 ; \mathrm{BC}=$? Ans: $10 \sqrt{3}$
3.2 In the figure

Let $\quad r=\frac{B C}{A B}$

Find $A D$ in terms of r.
Ans: $\frac{3}{r}$
3.3 Find the radius of a small circle inscribed between the given circles and line.

$$
\text { Ans: } \frac{4}{9}
$$

3.4 The reflection, of this figure. with respect to n followed by reflection with respect to m is the same as a certain rotation by how many degrees and in what direction?

Ans: $2 a^{\circ}$, clockwise
3.5 The base of a prism consists of n non-overlapping equilateral triangles with sides of 2. Find n if the height of the prism is \sqrt{n} and the volume of the prism is $64 \sqrt{3}$.

Ans: 16
4.1 $\overline{B D}$ contains the orthocenter of $\triangle A B C . \mathrm{AC}=3$. Find BD .

Ans: $\frac{4 \sqrt{2}}{3}$

4.2 Let X be the locus of points P so that $\frac{P A}{P B}=3$. Then X intersects $\overrightarrow{A B}$ in how many points?

Ans: 2
$4.3 \overline{B G} \| \overline{H D}$ and the area of $\triangle A B G$ is 2 . Find the area of the trapezoid ABCD . Ans: $\frac{10}{9}$

4.4 The hypotenuse of a 45-45-90 triangle is 10 . Find the long leg of a 30-60-90 triangle which has its short leg as the leg in the 45-45-90.

Ans: $5 \sqrt{6}$
4.5 A right circular frustum has a height of π and circumferences of the bases 6 and 8 inch. What is the volume of the frustum?

Ans: $\frac{37}{3}$
E. 1 A certain rectangle has the property that when a square is cut off of one end, the resulting rectangle has the ratio of the length to the width equal to twice the corresponding ratio of the original rectangle; see diagram. What is the ratio of the length to the width on the original rectangle?

$$
\text { Ans: } \frac{1+\sqrt{3}}{2}
$$

E. 2 A line intersects the union of two different coplanar circles in x points. If A is the set of all possible x values, list the elements of A.

Ans: $\{0.1 .2 .3 .4\}$
E. 3 Suppose the two acute angles of a rhombus measure θ°. Also, suppose the ratio of the area of the rhombus to the square of its perimeter is $2^{-9 / 2}$. Find θ. Ans: 45°

