Hoover 2005 Practice: Write the contrapositive of the conditional $p \rightarrow q$

- 1.1 A cone of height 10 is inscribed in a sphere of radius 8. What is the area of its base? Ans: 60π
- 1.2 Find the distance from point (1,1) to the line $y = \frac{2-x}{4}$ Simplify your answer.

Ans:
$$\frac{3\sqrt{17}}{17}$$

Ans: $\sqrt{5}$

1.3 Find x in the following figure.

1.4 The length of the arc of the circle with radius r, that is above the line y = a is exactly one quarter the circumference of the circle. Find $\frac{a}{r}$

1.5 A circle with radius of 10 and center (0,0) is intersected by the line x = 5 at points P and Q. At what point will the lines tangent to the circle at P and Q cross each other? Ans: (20,0)

2.1 A', B', C' are midpoints. The area of triangle ABC is 10.

Find the area of triangle A'B'C'

Ans: $\frac{5}{2}$

2.2 Find the area of the trapezoid inscribed in circle O.

Ans: 196

2.3 Let S_1 be the sphere centered at A with radius 2, and let S_2 be the sphere centered at C with radius 2. Find the area of the circle of intersection between the two spheres.

2.4 If the length, width, and space diagonal of a right rectangular prism are 6, 8, and 12 respectively, find the height of the prism. Ans: $2\sqrt{11}$

2.5 In the following figure, assume \overline{AC} is a diameter of the circle. Find h in terms of x, if $h \perp \overline{AC}$.

Ans: \sqrt{x}

3.1 A, B, and C are points on a circle of radius ten. AB=20, AC=10; BC=? Ans: $10\sqrt{3}$

3.3 Find the radius of a small circle inscribed between the given circles and line.

Ans: $\frac{4}{9}$

3.4 The reflection, of this figure. with respect to n followed by reflection with respect to m is the same as a certain rotation by how many degrees and in what direction?

Ans: $2a^\circ$, clockwise

3.5 The base of a prism consists of n non-overlapping equilateral triangles with sides of 2. Find n if the height of the prism is \sqrt{n} and the volume of the prism is $64\sqrt{3}$.

Ans: 16

4.1 \overline{BD} contains the orthocenter of $\triangle ABC$. AC = 3. Find BD.

4.2 Let X be the locus of points P so that $\frac{PA}{PB} = 3$. Then X intersects \overrightarrow{AB} in how many points?

Ans: 2

4.3 $\overline{BG} \parallel \overline{HD}$ and the area of $\triangle ABG$ is 2. Find the area of the trapezoid ABCD. Ans: $\frac{10}{9}$

4.4 The hypotenuse of a 45-45-90 triangle is 10. Find the long leg of a 30-60-90 triangle which has its short leg as the leg in the 45-45-90. Ans: $5\sqrt{6}$

4.5 A right circular frustum has a height of π and circumferences of the bases 6 and 8 inch. What is the volume of the frustum? Ans: $\frac{37}{3}$

E.1 A certain rectangle has the property that when a square is cut off of one end, the resulting rectangle has the ratio of the length to the width equal to twice the corresponding ratio of the original rectangle; see diagram. What is the ratio of the length to the width on the original rectangle?

E.2 A line intersects the union of two different coplanar circles in x points. If A is the set of all possible x values, list the elements of A. Ans: $\{0.1.2.3.4\}$

E.3 Suppose the two acute angles of a rhombus measure θ° . Also, suppose the ratio of the area of the rhombus to the square of its perimeter is $2^{-\frac{9}{2}}$. Find θ . Ans: 45°