Hoover High School Mathematics Tournament - March 5, 2005 Algebra 2 Written Test

(N.O.T.A. = none of the above)

1. Which of the following is true?

(A) $\log (A + B) = \log A + \log B$ (B) $\frac{\log A}{\log B} = \log A - \log B$ (C) $p \log A = \log (A^p)$ (D) $\log (AB) = (\log A)(\log B)$ (E) N.O.T.A.

2. Find x if $f(x) = \sqrt{x-2}$ and f(x) = 2.

(A) 0

(B) 6 (C) undefined (D) 2 (E) N.O.T.A.

3. For $f(x) = x^2 + 15$ and $g(x) = \sqrt{3x}$, find g(f(x)).

(A) $9x^2 + 5$ (B) $\sqrt{3x} + 2$ (C) 3x + 15 (D) $\sqrt{3x^2 + 45}$

(E) N.O.T.A.

4. Suppose f and g are real-valued functions with $f(x) = x^2$ and $g(x) = \sqrt{x}$. Find f(g(-4)).

(B) -4(A) 16

(C) undefined

(D) 4

(E) N.O.T.A.

5. Find the slope of the line passing through the points (1,1) and (e,e^2) .

(A) e+1 (B) $\frac{1}{e}$ (C) 3.71 (D) $e-\frac{1}{e}$ (E) N.O.T.A.

6. Which of the following equations does not describe the graph of a conic section or degenerate conic section?

(A) x = 0 (B) x + y = 0 (C) $x^2 + y^2 = 0$ (D) $y = x^{-1}$

(E) $y = x^{-2}$

7. How many integer solutions does the equation ||z|| = 20 have? (|x|represents the largest integer $\leq x$.)

(A) 4

(B) 8

(C) 3 (D) 6 (E) N.O.T.A.

- 8. If $h(x) = e^{x+3}$, find $h^{-1}(x)$.
 - (A) $\ln (3 x)$ (B) $3 + \ln x$ (C) e^{3-x} (D) $\ln (3 + x)$
 - (E) N.O.T.A.
- 9. The product of an odd function h(x) and an odd function q(x) is
 - (B) odd (C) neither = (D) unable to answer without (A) even being given h(x) and g(x)(E) N.O.T.A.
- 10. The equation $y^2 4x^2 = 0$ describes a degenerate conic section. What does the graph of this equation look like?
 - (A) a point (B) a line (C) two intersecting lines
 - (D) two parallel lines (E) N.O.T.A.
- 11. Which of the following best describes the graph of $x^2 + 2x 9y^2 + y = 0$?
 - (A) line (C) circle (B) parabola (D) ellipse (E) hyperbola
- 12. Which of the following is a sixth root of 64?
 - (A) $\frac{\sqrt{3}}{2} + \frac{1}{2}i$ (B) $\sqrt{3} i$ (C) $1 \sqrt{3}i$ (D) $-1 \sqrt{3}i$ (E) N.O.T.A.
- 13. Find the sum of the first 100 terms of the arithmetic sequence with $a_2 = -10$ and $a_{12} = 10$.
 - (A) 8500
- (B) 8600
- (C) 8700
- (D) 8800
- (E) N.O.T.A.
- 14. If $f(x) = x^2 + x$, find $\frac{f(x+h) f(x)}{h}$, where $h \neq 0$.
 - (A) $2xh + h^2 + 1$ (B) h (C) 1 (D) 2x + h + 1 (E) N.O.T.A.

15. The area of a rectangle is 20 ft². Express the perimeter P(x) of this rectangle as a function of the length of one of its sides x.

(A) P(x) = 2x + 2y (B) P(x) = 2x + 2y - 20 (C) P(x) = 2x + 2(10 - x) (D) $P(x) = 2x + \frac{40}{x}$ (E) N.O.T.A.

16. What are the vertical asymptotes of the graph of $f(x) = \frac{x^2 - 4}{(x - 5)(x + 3)(x - 2)}$?

(A) x = 0 (B) x = 5, x = -3, x = 2 (C) x = -5, x = 3, x = -2

(D) x = 5, x = -3 (E) N.O.T.A.

17. Find the sum of the infinite series $300+150+\frac{200}{3}-...+\frac{150+150k}{3^{k-1}}+...$

(A) 900

- (B) 550

- (C) $\frac{1125}{2}$ (D) $\frac{1225}{3}$ (E) N.O.T.A.
- 18. The graph of $4x^2 + y^2 8x + 4y 28 = 0$ is that of an ellipse. Find the length of the minor axis of the ellipse.

- (A) 2 (B) 3 (C) 6 (D) $\sqrt{7}$ (E) N.O.T.A.

19. The graph of y = f(x - 5) + 3 is the graph of y = f(x)

- (A) shifted to the left 5 units and up 3 units (B) shifted to the left 5 units and down 3 units (C) shifted to the right 5 units and up 3 units (D) shifted to the right 5 units and down 3 units (E) N.O.T.A.
- 20. Solve for x: (x-5)(x+7)=1

- (A) 5, -7 (B) -5, 7 (C) $\pm \sqrt{37}$ (D) $\pm 2\sqrt{37}$ (E) N.O.T.A.

21. The graph of $y = x^2$ intersects the graph of $\frac{x^2}{4} + \frac{j^2}{36} = 1$ at two points. Find the distance between those points.

- (A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) 6 (D) $4\sqrt{3}$

- -(E) 12

22. Suppose z is a complex number with 0 < |z| < 1. Also suppose x and y are complex numbers such that $x = z^3$ and $z = y^3$. Which of the following is true?

(A) |x| < |z| < |y| (B) |y| < |z| < |x| (C) |z| < |y| < |x| (D) |z| < |x| < |y| (E) N.O.T.A.

23. Suppose that a polynomial y = p(x) has the following characteristics:

(1) $p(x) \le 0$ for $x \le 5$

(2) p(x) > 0 for x > 5

(3) f(-3) = f(1) = 0

How many roots of odd multiplicity does y = p(x) have?

(A) not enough information

(B) 5 (C) 3 (D) 1 (E) N.O.T.A.

24. In the complex plane, the graph of $\{z: |z-1+i|=2\}$ is a circle. What is the center and radius of this circle?

(A) center $1 \pm i$, radius 2 (B) center 1 - i, radius 2

(C) center 1+i, radius $\sqrt{2}$ (D) center 1-i, radius $\sqrt{2}$

(E) N.O.T.A.

25. What common quantity must be added to each term of the sequence x, y, z in order to create a geometric sequence?

(A) $\frac{y^2 - xz}{z + x - 2y}$ (B) $\frac{xz + y^2}{x + z + 2y}$ (C) $\frac{y^2 - xz}{2y - x - z}$ (D) $\frac{y^2 + xz}{x - z - 2y}$ (E) N.O.T.A.

Tie Breakers

- 1. If $\frac{2}{3}$ is the eighth term of the geometric sequence ..., $\frac{3}{2},1,\frac{2}{3},...$, then what is the first term?
- 2. What is the conjugate of $\frac{1+2i}{3-4i}$, written in a+bi form?
- 3. How many solutions of $\sin^2\theta = -\cos^2\theta$ are there for $0 \le \theta \le 2\pi$?