Hoover High School Mathematics Tournament - March 5, 2005 Algebra 2 Ciphering

1.1 The 50 th term of an arithmetic sequence is 200 . If the common difference is 7 , what is the sixth term?
1.2 Let $f(x)=\frac{x+3}{x-7}$. Find $f^{-1}(-1)$.

A: 2
1.3 A hyperbola has vertices $(2,1)$ and $(2,3)$ and passes through the points $(1,0)$ and $(3,0)$. If the equation of this hyperbola is written as $a(y-k)^{2}+$ $b(x-h)^{2}=1$, find $a+k+b+h$.

A: 2
$1.4\left|\begin{array}{ccccc}x & 0 & 0 & 0 & x \\ 0 & x & 0 & x & 0 \\ 0 & 0 & x & 0 & 0 \\ 0 & x & 0 & x & 0 \\ x & 0 & 0 & 0 & x\end{array}\right|=x^{6}$. Find the sum of all such x.
A: 0
1.5 Given perpendicular lines m and n, find the slope of line n, given that line m has negative slope, y-intercept b, and x-intercept a.

A: $\frac{a}{b}$
2.1 Solve for $x: \sqrt{(x-5)^{2}}=10$

A: -5 and 15
$\underline{2.2}$ If $g(x)=3(x+5)^{2}$, find $\frac{g(x+h)-g(x)}{h}$, where $h \neq 0$.
A: $6 x+3 h+30$
2.3 Find all rational roots of the polynomial $P(x)=x^{5}+10 x^{4}-12 x^{3}-266 x^{2}-245 x$.

A: $0,5,-7,-1$
2.4 An ellipse passes through the point $(2,6 \sqrt{2})$ and has the points $(6,0)$ and $(-6,0)$ as the endpoints of the minor axis. If the equation of this ellipse is written as $a(x-h)^{2}+b(y-k)^{2}=1$, find $\frac{a+b}{a b}$.
2.5 A coin is weighted with P (heads) $=0.2, P$ (tails) $=0.1$, and P (landing on its edge) $=0.7$. If you flip this coin six times, what is the probability of getting exactly 3 tails?

$$
\text { A: } 0.01458 \text { or } \frac{729}{50000}
$$

3.1 What are the vertical asymptotes of the function $y=\frac{x^{2}-4 x}{x^{2}-x-12}$?

$$
\mathrm{A}: x=-3
$$

3.2 Let A be the arithmetic mean and H be the harmonic mean of 6 and 12. What is the value of $\frac{A-H}{A+H}$?

$$
\mathrm{A}: \frac{1}{17}
$$

3.3 Find the domain (in interval notation) of the function
$f(x)=\sqrt{\frac{x^{2}-3 x-40}{x-3}}$.

$$
\mathrm{A}:[-5,3) \cup[8, \infty)
$$

3.4 A parabola has focus $(0,0)$ and directrix $x=4$. If the equation of this parabola is written as $x=a y^{2}+b y+c$, find the arithmetic mean of a, b, and c.

$$
\text { A: } \frac{5}{8}
$$

3.5 Find the value of the expression $\left(\sum_{k=1}^{n} k\right)^{2} \div\left(\sum_{k=1}^{n} k^{3}\right)$ when $n=10$.

A: 1
4.1 A semi-elliptical arch over a tunnel through a mountain has a major
axis of 100 feet and a height at the center of 30 feet. Determine the height of the arch 5 feet from the center of the tunnel.

$$
\text { A: } 9 \sqrt{11} \text { feet }
$$

4.2 Let z be a complex number. Find z if $2 z+i=\bar{z}-3 i$.

$$
\mathrm{A}:-\frac{4}{3} i
$$

4.3 Find all values of y that satisfy the equation $y^{\frac{2}{3}}+y^{\frac{1}{3}}=6$. A: 8 and -27
4.4 Find the value of $(1-\sqrt{3} i)^{12}$, where $i=\sqrt{-1}$.

A: 4096
4.5 If $\frac{50}{(x+3)^{2}\left(x^{2}+1\right)}$ is decomposed into partial fractions, find the numerator of the fraction whose denominator is $x^{2}+1$.

$$
\text { A: }-3 x+4
$$

Extra 1 A sequence is defined recursively by the formula $a_{n+1}=\frac{3 a_{n}}{a_{n-1}}$, where $a_{1}=2$ and $a_{2}=1$. What is the value of a_{2005} ?

Extra 2 If $x^{x^{x^{x \cdots}}}=2$, then $\left(\left(\left(\left((x)^{x}\right)^{x}\right)^{x}\right)^{x}\right)=?$

