Geometry Ciphering - Hoover High School Math Tournament - February 22, 2003

1-1. If $\mathrm{AB}=\mathrm{BD}$, and $\mathrm{AC}=\mathrm{CE}$

Ans: $\mathrm{x}=5$

1-2. $\quad \mathrm{N}$ is the center of the circle. If $\mathrm{YM}=\mathrm{YN}=6$, what is $\boldsymbol{m} \angle \mathrm{M}$ in degrees?
Ans: 90°

1-3. If the area of the inscribed square is 8π, what is the area of the circle?
Ans: $4 \pi^{2}$

1-4. $\quad \tan \angle A=$?

Ans: $\frac{\sqrt{3}}{3}$

1-5. Find the degree measure of the major angle of an arc formed by the hands of a clock at 2:30.

2-1. $(C D)^{2}=?$

Ans: 50
2.2. If $\mathrm{AY}=\mathrm{YC}=4$, find the area of the circle.

Ans: 25π

2.3. What is 4 times the area of a triangle with sides length $9,11,13$? Ans: $33 \sqrt{35}$
2.4. $\overline{A C}$ is a radius. If the area of the circle is 81π, what is $B C$? Ans: 15

2.5. $\quad \mathrm{AX}=8, \mathrm{DX}=9, \mathrm{CX}=7 . \quad \mathrm{BX}=$?

Ans: $4 \sqrt{2}$

3.1. $m \angle A=90^{\circ}, m \angle B=30^{\circ}, \mathrm{b}=1$ What is the length of the median to side a ?

Ans: 1

3.2. There are three congruent circles tangent to each other as shown. The sum of their circumferences is 36π. What is the shaded area?

Ans: $36 \sqrt{3}-18 \pi$

3.3 What is the volume of a regular tetrahedron that has base area $=9 \sqrt{3}$

Ans: $18 \sqrt{2}$
3.4 The area of this trapezoid is $50(5+\sqrt{3}) . X=$?

Ans: 10

3.5 What is x^{2} ?

Ans: 1
4.1 In circle $\mathrm{O}, m \widehat{A B C}=240^{\circ}$, radius $\mathrm{r}=2003$. The arc length of $\overparen{A C}$ can be written in form $\frac{a \pi}{b}$. Find $\frac{3 a}{2 b}$.

Ans: 2003

4.2 Figure MNOP is a parallelogram. $m \angle P=$ Measure of interior angle of a regular pentagon. Find x (in degrees) where $\mathrm{x}+70$ is $m \angle M$.

Ans: 2
4.33 poles, AE, BD, and CF , are placed next to each other as shown. AE is 2 ft . tall. What is 3 times the height of CF?

	B	A	C	
4.4	$l \\| m$			
$n \\| k$				$\quad m \angle E C D=30^{\circ} ; m \angle P A B=58^{\circ} \quad$ What is $\frac{1}{5} x^{\circ} ? \quad$ (figure is not to scale) Ans:

$\frac{88}{5}$

4.5 What is the slope of the line perpendicular to the line with equation $200 x+3 y=2003$?
4.5 What is the slope of the line perpendicular to the line with equation $200 x+3 y=2003$?

Ans: $\frac{3}{200}$
E. $1 \quad \mathrm{~A}=$ number of diagonals in an icosagon.
$\mathrm{B}=$ measure of an interior angle in a regular nonagon. $(A-B)^{2}=$? Ans: 900
E. 2 Sphere A has a great circle with a circumference of 20π. Small circle B has an area of 20π. What is the distance between A and B ?

Ans: $4 \sqrt{5}$

E. 3 If $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ is the perpendicular bisector of the line segment with endpoints $(4,-20)$ and $(-8,26)$, find the square root of C . (note: $|A|,|B|,|C|$ are relatively prime integers and $\mathrm{A}>0$.)

