Algebra I Exam Vestavia Hills High School Math Tournament 2014

1	Find the number of diagonals in a regular dodecagon.							
	A. 12	B. 60	C. 36	D. 54	E. NOTA			
2.	Evaluate $5 + \frac{2}{5 + \frac{2}{5 + \dots}}$.		A. $\frac{5+\sqrt{13}}{2}$ D. 5.3	B. $\frac{5+\sqrt{33}}{2}$ E. NOTA	C. $\frac{5+\sqrt{29}}{2}$			
2	Find the area of an ignoration	triangle with logg						
3.	Find the area of an isosceles		C. 90	AND	E NOTA			
	A. 30	B. 60	C. 90	D. 120	E. NOTA			
4	. Compute 75 ³ – 45 ³ .							
	A. 30	В. 360	C. 900	D. 3600	E. NOTA			
5	Mr. Taylor has a 7 ft by 10 ft rectangular doghouse. He wants to leave his dog, Barkley, in the yard while he goes to work. If Barkley's leash is 9 feet long and the leash is attached at an outside corner of the doghouse, what is the area of the space in which Barkley can roam? All answers are in square feet.							
	A. $\frac{255}{4}\pi$	B. $\frac{137}{4}\pi$	C. $\frac{241}{4}\pi$	D. $\frac{247}{4}\pi$	E. NOTA			
6	. What is the probability that someone draws a face card and then a black card from a standard deck of cards, if the cards are drawn without replacement? A face card is a jack, queen, king, or ace.							
	A. $\frac{2}{13}$	B. $\frac{4}{5}$	C. $\frac{8}{51}$	D. $\frac{4}{13}$	E. NOTA			
7.	. Find the sum of the series 1	+4+7++34.						
	A. 210	B. 200	C. 247	D. 175	E. NOTA			
8.	. A bee and a mosquito are 40 travels at 5 mph. If a dog ruluntil the bee and mosquito n	ns back and forth l						
	A. 280 miles	B. 74 miles	C. 70 miles	D. 35 miles	E. NOTA			
9.	Simplify: $\frac{2\sqrt{3} + 3\sqrt{2}}{3\sqrt{3} - 2\sqrt{2}}$							
	A. $\frac{30+13\sqrt{6}}{19}$	B. $6\sqrt{3} + 6\sqrt{2}$	C. 4√6	D. $\frac{\sqrt{3}+\sqrt{2}}{5}$	E. NOTA			
10.	Greg can paint a house in 5 h how long would it take them				nearest tenth of an hour,			
	A. 3	B. 3.5	C. 4	D. 4.5	E. NOTA			

11. Every morning, a very slow mouse climbs a 5-foot pole to get some cheese that rests at the top of the pole. However, he can only make it up the pole 10 inches during the day, and he slides down the pole 6 inches each night. On which day does the mouse finally get the cheese?

C. 16

D. 17

E. NOTA

B. 15

A. 14

		12. The expression $\sqrt{\frac{32}{45}}$	$+\sqrt{\frac{448}{147}}$ is equivalent to whic	h of the following expressi	ions?						
		A. $\frac{24\sqrt{6} + 28\sqrt{35}}{21\sqrt{15}}$	B. $\frac{32\sqrt{14}}{21\sqrt{15}}$		D. $\frac{28\sqrt{6} + 24\sqrt{35}}{21\sqrt{15}}$	E. NOTA					
		13. What is the left-most <i>x</i> -intercept of the graph of $y = x^2 + 4x - 12$?									
		A12	B. 2	C6	D2	E. NOTA					
		14. The system of equation	ons shown below can be solve	ed with $x = A$, $y = B$, $z = C$.	Find $A+B+C$.						
		$\begin{cases} x+5y+3z=4 \end{cases}$									
		$\begin{cases} x+5y+3z=4\\ 5x+2y+4z=9\\ 2x+y+z=11 \end{cases}$	A. 3 B. 4	C. 5	D. 2	E. NOTA					
	15.	Find $\frac{f(x+h)-f(x)}{h}$ for	$f(x)=(x+2)^2.$								
		A. $h+2x+4$	B. $h^2 + 2hx + 4h$	C. $h+2x+2$	D. $2x + 4$	E. NOTA					
n.		6. If one pound of gummy bears costs \$1.39 and a pound of gummy worms costs \$1.88, and you want to create a one-pound mixture of the two candies costing a total of \$1.60, how many ounces of gummy bears will you buy? Round to the nearest whole number.									
		A. 7	B. 9	C. 5	D. 6	E. NOTA					
		7. A 50 meter by 90 meter rectangular garden has a uniform rectangular sidewalk around it. If the area covered by the garden and sidewalk is 6000 m ² , how wide is the sidewalk, in meters?									
		A. 2.5	B. 7.5	C. 10	D. 5	E. NOTA					
		Bruster's has 20 flavors of ice cream could she ge	of ice cream. Jennifer want t?	s one cone of three diffe	erent flavors. How many	different combinations					
		A. 1140	B. 20!	C. 6840	D. 5740	E. NOTA					
	19.	Let r and s be the roots of	f the equation $8x^2 - 54x - 4$	$r = 0$. Find $\frac{r+s}{rs}$.							
		A. $\frac{27}{4}$	B. $\frac{5}{6}$	C. $-\frac{6}{5}$	D. 1	E. NOTA					
		4	6	5	D. 1	L. NOTA					
	20.	If $f(x) = 3x^2 - 12x - 10$, fi	nd the value of $f(f(f(5)))$								
		A55	B. 5	C. 55	D5	E. NOTA					
		ct of the roots taken two									
		A. –10	the product of the roots. B. 10	C. 26	D26	E. NOTA					
	22.	Find all elements of $M = \langle$	$\left\{11, \sqrt{5}, -10, 0, \frac{0}{8}, \sqrt{16}, 0.98\right\}$	that are rational num							
			$\frac{0}{8}$			E. NOTA					
	23.	Find the length of the seg	ment of the line $y = \frac{1}{2}x + 4$	in the interior of the pa	arabola $y = x^2 - \frac{9}{2}x + 9$.						
		A. $\frac{5+\sqrt{5}}{4}$	B. $\frac{21-\sqrt{5}}{2}$	C. $\frac{8}{5}$	D. $\frac{5}{2}$	E. NOTA					
	24. 1	If $64^{x+3} = 4^{2x-1}$ and 216^{y-2}	2 = 36 ^{3y-1} , find the value of	$(x-y)^2-3xy.$							

E. NOTA

25. Find the remainder when $x^2-9x+10$ is divided by x+2.

A. 8

B. 0

C. -4

D. 7

E. NOTA

Write the answers to the tie-breakers on the back of your bubble form. Denote each answer as T1, T2, and T3.

T1. Evaluate
$$\frac{-4(-6)-(3)(2)^3}{-12-\sqrt{144}+5}.$$

T2. Solve for c: $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$. T3. Factor over the integers: $6a^3 + 15a^2b - 4ab^2 - 10b^3$.

You may keep your copy of the exam.