Algebra I Written Exam Vestavia Hills High School Math Tournament 2013

- 1. The probability that Kevin is late to school is 85%, the probability that Charles scores 100 on a test is 70%, and the probability that Philip loses his paper is 80%. What is the probability that Kevin isn't late, Charles doesn't get a 100, and Philip doesn't lose his paper?
- C. 0
- E. NOTA

- 2. Find the sum of the first 10 prime numbers.
- B. 129
- C. 130
- D. 99
- E. NOTA

3. The radius of congruent circles *A*, *B*, and *C* shown at the right is 2.

Find the area of $\triangle ABC$.

- A. $4\sqrt{3}$
- B. 4
- C. $2\sqrt{3}$

- D. $8\sqrt{3}$
- E. NOTA
- 4. Find f(g(f(0))) if $f(x)=2x^2+5$ and g(x)=4x-10.
 - A. 172
- C. -189

- D. 30
- E. NOTA

- 5. If *A* is the number of distinct ways to arrange SHIRLPOP and *B* is the number of distinct ways to arrange DILLPICKLE, what is the value of A+B?
- B. 302400
- D. 282240
- E. NOTA

- 6. Find the value of $100101_2 + 101001_2$ when converted to base 8.
 - A. 116
- B. 112
- D. 115
- E. NOTA

- 7. Which of the following is not true?
 - A. No scalene triangles are isosceles triangles.
 - C. The sum of the squares of the two shortest sides of a triangle always equals the square of the longest side.
- B. Every triangle has at least two acute angles.
- D. A right triangle can be an isosceles triangle.
- 8. If $f(x) = \sqrt{x^2}$, then f(x) can also be expressed as:
 - A. *x*

- B. *-x*
- C. $\pm x$
- D. | *x* |
- E. NOTA
- 9. Find the equation of the line that passes through (3, 5) and is perpendicular to the line containing (-2, 5) and (2, -1).

A.
$$y = -\frac{3}{2}x + 2$$

B.
$$y = \frac{3}{2}x + 2$$
 C. $y = \frac{2}{3}x + 2$ D. $y = \frac{2}{3}x + 3$

C.
$$y = \frac{2}{3}x + 2$$

D.
$$y = \frac{2}{3}x + 3$$

E. NOTA

- 10. Find the units digit of 2337⁷⁸⁹.

- C. 3
- D. 1
- 11. In a dog park someone counted 78 heads and 228 legs. If only two-legged humans and four-legged dogs are in the park, how many dogs were at the park?
 - A. 36
- C. 47
- D. 32
- E. NOTA

- 12. If $f(x) = \frac{2x+1}{x-1}$, then find $f^{-1}(x)$.
 - A. $\frac{x+1}{x-2}$
- B. $\frac{x-1}{2x+1}$
- C. $\frac{2x+1}{x}$
- D. x + 1
- E. NOTA

- 13. Write 3.513 as a fraction in lowest terms.
- C. $\frac{116}{33}$
- E. NOTA

- 14. Find the value of $\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\dots}}}}$.
 - A. 2

- B. $\sqrt{13}$
- C. 3
- D. 5
- E. NOTA

	A5	B. 3	С6	D3	E. NOTA	
16.	Find the remainder when $6x^4 + 5x^3 - 2x + 8$ is divided by $x - \frac{1}{2}$.					
	A. 2	B. 4	C. 6	D. 8	E. NOTA	
17.	For what real values of <i>x</i> does the expression $\sqrt{4-x^2}$ represent a real number?					
	A. $x \le 2$	B. <i>x</i> ≥2	C. $-2 \le x \le 2$	D. $x \ge \pm 2$	E. NOTA	
18.	How many integers are solutions to $\frac{x+1}{x+3} - \frac{x-3}{2-x} = \frac{2x^2 - 15}{x^2 + x - 6}$?					
	A. 0	B. 1	C. 2	D. 3	E. NOTA	
19.	The graphs of $y = 2^x$ and $y = \left(\frac{1}{2}\right)^x$ have:					
			B. the same <i>y</i> -intercep E. three points in com	-	C. no point in common	
20.	Consider a collection of five red balls numbered 1 through 5 and a collection of green balls also numbered 1 through 5 If a red ball and a green ball are drawn at random and the sum of the numbers written on them is found, how many different sums are possible?					
	A. 25	B. 10	C. 20	D. 9	E. NOTA	
21.	A penny, nickel, dime, and quarter are each tossed once. What is the probability of getting exactly two heads?					
	A. $\frac{1}{2}$	B. $\frac{5}{16}$	C. $\frac{1}{16}$	D. $\frac{3}{8}$	E. NOTA	
22.	2. Determine the term in the expansion of $(a-2b^2)^7$ that involves a^4 .					
	A. $-280a^4b^6$	B. $35a^4b^2$	C. $21a^4b^7$	D. $35a^4b^6$	E. NOTA	
23. Given the line with equation $2x+3y-6=0$, which of the following is not true?						
	A. If <i>x</i> increases, then <i>y</i> decreases. It is perpendicular to $3x + E$. It is parallel to $2x + 3y - 4$	-2y+6=0.	B. It has a negative slope.D. It has x-intercept 3 and y-intercept 2.			
24.	If the graph of $f(x) = 25x^2 + bx + 9$ crosses the <i>x</i> -axis at only one point, what is the value of <i>b</i> ?					
	A. 6	B. 10	C. 15	D. 36	E. NOTA	
25.	Grade A crude oil sells for \$78 per barrel and Grade B crude oil sells for \$54 per barrel. If a mixture sells for \$63 per barrel, what is the ratio of the number of barrels of Grade A to the number of barrels of Grade B used in the mixture?					
	A. $\frac{11}{15}$	B. $\frac{13}{9}$	C. $\frac{5}{3}$	D. $\frac{3}{5}$	E. NOTA	
Write the answers to the tie-breakers on the back of your bubble form. Denote each answer as T1, T2, and T3.						
T1.	Subtract $x^2 - 3x + 4$ from $5x$	$^{2}+3x+1$.				
T2. The roots of the polynomial $f(x) = x^3 + 5x^2 + 2x - 8$ are a , b , and c , where $a < b < c$. Find the value of a^{b^c} .						

You may keep your copy of the exam.

15. Find the maximum value of $f(x) = -\frac{1}{2}x^2 - 6x - 21$.

T3. If $10^x = 50$, find $\sqrt[x]{2500}$.