
Vestavia Hills High School 2011 Mathematics Tournament

		Geometry Written Ex	amination	
1. A square has	an area of $\frac{9}{4}$ ft ² . What	at is the area of a circle i	nscribed in the square?	
$A. \frac{3}{4}\pi ft^2$	$B. \frac{3}{2}\pi ft^2$	C. $\frac{9}{4}\pi \text{ft}^2$	D. $\frac{9}{16}\pi \text{ft}^2$	E. NOTA
2. What is the m	aximum number of tot	tal intersections when 6	distinct circles are draw	n in a plane?
A. 20		C. 36	D. 42	E. NOTA
Two coplanar common external	circles have radii of 2 crnal tangent of the two	3 ft and of 16 ft and the circles.	ir centers are 25 ft apart	. Find the length of the
A. 23 ft	B. 24 ft		D. $\sqrt{881}$ ft	E. NOTA
4. The circles ar circle, and C.	e concentric, \overline{AB} is the $D = 6$. Find the area of	e diameter of the larger f the shaded region.	circle, the chord \overline{CD} is	tangent to the smaller

B. 9π

C. 6π

D. 3π

E. NOTA

5. A cube has a surface area of 1000. What is the volume of a sphere inscribed in the cube?

A. $\frac{500}{3}\pi$ B. $\frac{500\sqrt{15}}{27}\pi$ C. $\frac{2700\sqrt{15}}{9}\pi$ D. $\frac{2500\sqrt{15}}{9}\pi$

E. NOTA

6. A circle passes through the points (0, 0), $(0, 6\sqrt{2})$, and $(3\sqrt{2}, 3\sqrt{2})$. What is the sum of the area and circumference of this circle?

A. $18\pi + 6\sqrt{2}\pi$

B. $18\pi + 12\sqrt{2}\pi$

C. $72\pi + 6\sqrt{2}\pi$

D. $72\pi + 12\sqrt{2}\pi$

7. Find the area of the circle.

D. 36π

E. NOTA

8. In rectangle *TIAK*, $\frac{\text{area of } \Delta TKL}{\text{area of quad } TIAL} = \frac{1}{6}$. Find $\frac{KL}{LA}$.

A.

B. $\frac{3}{4}$

C. $\frac{1}{2}$

E. NOTA

9. In a triangle, the area is numerically equivalent to the perimeter. What is the radius of the circle inscribed in the triangle? **D.** 5

A. 2

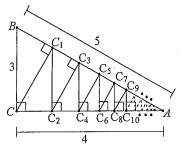
B. 3

C. 4

E. NOTA

10. Quadrilateral ABCD is a rectangle. Find BE.

A. $\sqrt{377}$


B. $3\sqrt{47}$

C. 3

D. 19

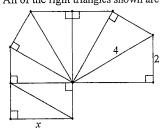
E. NOTA

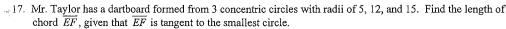
11. Find the sum of $CC_1 + C_1C_2 + C_2C_3 + \cdots$

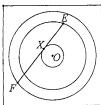
- **A.** 4
- **B.** 5
- C. 12
- **D.** 15
- E. NOTA
- 12. Diameters \overline{PM} and \overline{RE} are perpendicular, and chord \overline{EA} intersects \overline{PM} at S with ES = 6 and AS = 1. If $k\pi$ is the area of circle O, then find k.

- **A.** 96
- **B.** 21
- **C.** 36
- **D.** 49
- E. NOTA
- 13. Square JACK is constructed in the interior of the regular hexagon JONBIK. If the hexagon's sides measure 1, find the area of ΔJON .

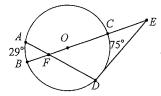
- A. $\frac{\sqrt{3}}{8}$
- B. $\frac{\sqrt{3}-3}{4}$
- C. $\frac{2\sqrt{3}-1}{4}$
- D. $\frac{\sqrt{3}}{4}$
- E. NOTA
- 14. An ant is on the bottom edge of a right circular cone with base area π and slant height 6. What is the shortest distance that the ant has to travel to loop around the cone and come back to its starting position?
- Α. π
- B. 2π
- C. $2\pi^2$
- D. π
- E. NOTA


- 15. A = volume of a sphere with radius 2
 - B = number of distinct ways to arrange the letters in the word PAPARAZZI
 - C = value of x


Find $\frac{3AC}{R}$

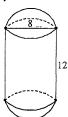

- A. $\frac{4}{35}$
- B. $\frac{2}{13}$
- С. л
- D. $\frac{12}{25}\pi$
- E. NOTA

16. All of the right triangles shown are similar. Find the value of x.



- A. 3
- **B.** $2\sqrt{3}$
- C. $\sqrt{3}$
- D. $\frac{3\sqrt{3}}{1}$
- E. NOTA

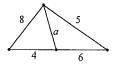
- A. $13 + 5\sqrt{10}$
- **B.** $5\sqrt{10}$
- **C.** 13
- **D.** 30
- E. NOTA
- 18. $\triangle ABC$ is inscribed in a circle such that A and B are the endpoints of a diameter. \overline{CD} is the altitude drawn to \overline{AB} . If AC = 15 and BD = 16, compute the value of $\frac{(AD)(BC)}{CD} 3$.
- **A.** 15
- **B.** 12
- C. 25
- **D.** 9
- E. NOTA
- 19. In $\bigcirc O$, \overline{BC} is a diameter, $\overline{mCD} = 75^{\circ}$ and $\overline{mAB} = 29^{\circ}$. Find $m \angle EDA$.



- **A.** 99°
- B. 105°
- C. 113°
- **D.** 136°
- E. NOTA

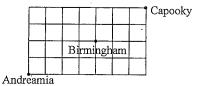
20. Find x.

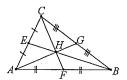
- **A.** 10
- **B.** 8
- C. 12
- **D.** 16
- E. NOTA
- 21. Find the surface area of the figure. The diameter of the base of the cylinder is 8 and the height of the cylinder is 12. The cylinder has a hemisphere attached to each base.


- A. 32π
- **B.** 576π
- C. 160π
- **D.** 448π
- E. NOTA
- 22. Robert Griffin III is tied to the outside edge of a 7 in. by 17 in. barn with a 12 in. rope. What is the largest area in which he can graze?
- A. $108\pi \text{ in}^2$
- B. $\frac{313}{4}\pi \text{ in}^2$
- C. $144\pi \text{ in}^2$
- **D.** $\frac{457}{4}\pi \text{ in}^2$
- E. NOTA
- 23. A cone has a slant height of $\sqrt{13}$ and a radius of 2. The length of the sides of a regular hexagon is equal to the volume of the cone divided by π . Find the area of the hexagon.
- **A.** $24\sqrt{3}$
- **B.** $12\sqrt{3} \pi$
- C. $12\sqrt{3}$
- **D.** $24\sqrt{3} \pi$
- E. NOTA

24. Silin has been drawing guinblobs since seventh grade. If a guinblob consists of a hemisphere and a cylinder both with radius 27, then what is the surface area of a guinblob if the height of the guinblob is 50? (The eyes, nose, and tummy are for decorative purposes only; they do not contribute to the surface area.)

- A. 2336π
- B. 2700π
- C. 3429π
- **D.** 2335.5π
- E. NOTA


25. If a is the radius of a circle, find the area of the circle.


- A. $\frac{112}{5}\pi$
- B. $\frac{122}{5}\pi$
- C. 23π
- **D.** 17π
- E. NOTA

PLEASE WRITE YOUR NAME, COMPLETE SCHOOL NAME, AND TIE-BREAKER ANSWERS ON THE BACK OF THE SCANTRON FORM. DENOTE EACH TIE-BREAKER AS "T1," "T2," and "T3."

T1. How many paths are there from Andremia to Capooky avoiding Birmingham if you can travel only up and to the right?

T2. $BE = 2x^2 - 5x - 12$ and $BH = x^2 - 15$. Find BE.

T3. How many distinct ways can you arrange the letters in TODDTAYLOR?

YOU MAY KEEP THIS COPY OF THE EXAM.