2011 Vestavia Hills High School Mathematics Tournament Algebra II Written Examination

•	ique numbers not beginnin	ig with 0 can be form	ed by rearranging the c	ligits of 1,223,3
A. 420	B. 7	C. 108	D. 360	E. NO
2. Find the distar	· nce between the directrices	of $4x^2 + 8x - 3y^2 + 6$	y-11=0.	
A. 3	B. $\frac{16}{5}$		D. 4	E. NO
3. The number (2 numbers.	2 ⁴⁸ – 1) is evenly divisible t		een 60 and 70. Find the	e sum of the two
A. 124	B. 126	C. 128	D. 130	E. NO
4. The solution se integer function	et to $\frac{x-4}{x+5} + \frac{x-1}{x+3} < 2$ is (a)	$(b)\cup(c,\infty)$. Find $[a-b]$	+b]+c, where $[]$ rep	resents the great
A12	В. 9	C. –11	D3	E. NOT
nus only one co	ice test contains five quest orrect answer. What is the passwer at least three of the q	probability that a stud	lent who knows nothing	estion. Each que g about the test
A. $\frac{1}{4}$	B. $\frac{21}{1024}$	C. $\frac{53}{512}$	D. $\frac{3}{256}$	E. NOT
6. If $A = \begin{bmatrix} 9 & -3 \\ 2 & 9 \end{bmatrix}$	$\begin{bmatrix} 3 \\ -6 \end{bmatrix} \times \begin{bmatrix} 4 & 7 \\ -6 & 8 \end{bmatrix}$, find $\frac{A}{2}$			
A. 2850	B. 6438	C. 4644	D. 1425	E. NOT
A. 2850 7. Find the coeffic	ןנ, יי בי	C. 4644	D. 1425 2 <i>y</i>) ¹⁰ 3.	E. NOT
A. 2850	B. 6438	C. 4644	$(2y)^{\frac{10}{3}}$.	
 A. 2850 7. Find the coeffic A. 280/243 8. On every birthday 	B. 6438 ient of the fourth term in the	C. 4644 The expansion of $(x+2)$ C. $\frac{140}{81\sqrt[3]{2}}$ The purples in the state of the stat	$(2y)^{\frac{10}{3}}$. D. $\frac{1120}{81}$	E. NOT
 A. 2850 7. Find the coeffic A. 280/243 8. On every birthday 	B. 6438 ient of the fourth term in th B. 15360 ay of his life, Fidelio has p	C. 4644 The expansion of $(x+2)$ C. $\frac{140}{81\sqrt[3]{2}}$ The purples in the state of the stat	$(2y)^{\frac{10}{3}}$. D. $\frac{1120}{81}$	E. NOT
 A. 2850 7. Find the coeffic A. 280/243 8. On every birthdohas \$1.20 in the A. 12 	B. 6438 ient of the fourth term in th B. 15360 ay of his life, Fidelio has p jar, what is Fidelio's age?	C. 4644 The expansion of $(x+2)$ C. $\frac{140}{81\sqrt[3]{2}}$ The expansion of $(x+2)$ The expans	$(2y)^{\frac{10}{3}}$. D. $\frac{1120}{81}$ In a piggy bank as his as	E. NOT
 A. 2850 7. Find the coeffic A. 280/243 8. On every birthdohas \$1.20 in the A. 12 	B. 6438 ient of the fourth term in the B. 15360 ay of his life, Fidelio has p jar, what is Fidelio's age? B. 15	C. 4644 The expansion of $(x+2)$ C. $\frac{140}{81\sqrt[3]{2}}$ The expansion of $(x+2)$ The expans	$(2y)^{\frac{10}{3}}$. D. $\frac{1120}{81}$ In a piggy bank as his as	E. NOT ge in years. If he E. NOT
A. 2850 7. Find the coeffic A. $\frac{280}{243}$ 8. On every birthdom has \$1.20 in the A. 12 9. The number of s A. Zero 0. If $\sum_{n=0}^{\infty} \cos^{2n} \theta = 4$	B. 6438 ient of the fourth term in the B. 15360 ay of his life, Fidelio has p jar, what is Fidelio's age? B. 15 solutions of $2^{2x} - 3^{2y} = 55$ in B. One	C. 4644 The expansion of $(x+2)$ C. $\frac{140}{81\sqrt[3]{2}}$ The expansion of $(x+2)$ The expans	D. $\frac{1120}{81}$ D. $\frac{1120}{81}$ D. 18 D. 18 D. Three	E. NOT

D. 4022

E. NOTA

B. 2011

12. Find the	number of digits in 52011.			
A. 1006	В. 1405	C. 1005	D. 1406	E. NOTA
13. Mr. Taylo possible a	or wants to build a rectangular parea for his dogs to roam. If he	oen for his three dogs has 300 feet of fencin	, and he wants each per g available, and if x an	to have the large
values of	these dimensions, find $\frac{x^2}{y^2}$.			, -
	X X	y x x		
A. 1	B. $\frac{9}{16}$	C. $\frac{1}{9}$	D. 9	E. NOTA
14. Find the s	mallest positive integer that sati	sfies $\frac{\log_3(4x) - \log_3}{6}$	$\frac{5+3}{} > 1$.	
A. 31	B. 33	C. 35	D. 37	E. NOTA
15. Find the su	um of the infinite series: $1 - \frac{1}{3}$	$\frac{1}{5} + \frac{1}{8} + \frac{1}{9} - \frac{1}{25} + \frac{1}{64}$		
A. $\frac{8}{7}$	B. $\frac{8}{15}$	C. $\frac{10729}{14400}$	D. $\frac{9}{14}$	E. NOTA
16. Let A = the	e volume of a cube with side ler	ngth 9		
	lateral area of a cylinder with i	_	0	
C = the $D = $ the	sum of the squares of the first number of real roots of the pol dot product of two orthogonal	10 natural numbers ynomial 150x ⁹ +10x ⁶		
Find ADE	$+\frac{B}{C}$.			
A. $\frac{\pi}{11}$	B. $\frac{\pi}{7}$	C. $\frac{2\pi}{11}$	D. $\frac{2\pi}{7}$	E. NOTA
7. Which of th	ne following is the identity func	tion $f(x) = x$ for all 1	real numbers?	

A.
$$f(x) = e^{\ln x}$$

B.
$$f(x) = \ln e^x$$

$$C. \quad f(x) = \sin(\sin^{-1} x)$$

D.
$$f(x) = \tan^{-1}(\tan x)$$

$$E. \quad f(x) = \sqrt{x^2}$$

18. If (x, y) is the hole in the graph of $y = \frac{x^2 + 2058x + 94517}{x + 2011}$, find |x| - |y|.

A. 27	B. 12	C. 6	D. 2	E. NOTA
20. If an item is sold for y dollars, the	I for x dollars, there is a re is a profit of 15% bas	loss of 15% based on sed on the cost. Find r	the cost. If, however, that of $y:x$.	he same item is sold
A. 30:7	В. 23:17	C. 21:4	D. 17:23	E. NOTA
21. Find the equation	n whose roots are 2 grea	ater than the roots of th	ne equation $3x^3 - 2x^2 -$	5x+2=0.
A. $3x^3 + 16x^2 +$ D. $3x^3 - 4x^2 - 7$		B. $3x^3 - 20x^2 + 39x - $ E. NOTA	$20 = 0$ C. $3x^3$	$-4x^2 - 20x + 16 = 0$
22. When simplified	, the third term in the ex	Expansion of $\left(\frac{a}{\sqrt{x}} - \frac{\sqrt{x}}{a^2}\right)$	-) is	
A. $\frac{15}{x}$	B. $-\frac{6x^2}{a^9}$	$C_{x} = \frac{15}{x}$	D. $\frac{20}{a^3}$	E. NOTA
23. If $f(x) = px + q$	and $f(f(f(x))) = 8x +$	21, and if p and q are	real numbers, find the	value of $p+q$.
A. 2	B. 3	C. 5	D. 7	E. NOTA
24. For how many va	llues of the coefficient a	does the system $\begin{cases} x^2 \\ x^2 \end{cases}$	+ax+1=0 $-x-a=0$ have a com-	mon real solution?
A. 0	В. 1	C. 2	D. infinitely m	any E. NOTA
The smallest mar and 5; the largest	easing size are cut along rolled through that hole bles will fit through any only through 5. You may a hole. For a score of	is the number above to of the holes; the median ay choose up to 10 ma	he hole. There are thre ium marbles will only g arbles of each size to ro	e sizes of marbles, to through holes 3, 4, Il and every rolled
A.12	B. 13	C. 14	D. 15	E. NOTA
PLEASE WRI BREAKER ANSV	TTE YOUR NAME, WERS ON THE BA TIE-BREA	, COMPLETE SC CK OF THE SCA AKER AS T1, T2,	ANTRON FORM. 1	ND THE TIE- DENOTE EACH
T1: Let $f(x) = \frac{\sqrt{x^2 - x^2}}{x}$	Find the set of all rea	al values of x for whic	h $f(f(x))$ exists.	
T2: $\begin{bmatrix} 11 & 0 & 6 & 5 \\ 1 & 3 & 7 & 8 \\ 2 & 13 & 3 & 0 \\ 9 & 4 & 1 & 4 \end{bmatrix}$				
T3: Find the sum of th	e infinite series: $\frac{10}{11} + \frac{1}{1}$	$\frac{13}{21} + \frac{16}{1331} + \frac{19}{14641} \dots$		
			_	

YOU MAY KEEP THIS COPY OF THE EXAM.

19. Let S = 2 + 4 + 6 + ... + 2N, where N is the smallest positive integer such that S > 1,000,000. Find the sum of the digits of N.