Vestavia Hills High School Mathematics Tournament 2011 Geometry Ciphering

Practice: Find the area of a regular octagon with side length 2.

Ans: $8 + 8\sqrt{2}$

1.1 The circles are concentric. The smaller circle has radius 3 and the larger circle has radius 5. Find the area of the shaded region.

Ans: $\frac{44}{9}\pi$

1.2 The volume of the right hexagonal prism is $384\sqrt{3}$. If each base edge is 8, find the surface area of the prism.

Ans: $192 + 192\sqrt{3}$

1.3 \overrightarrow{AC} bisects $\angle BAD$. Find the perimeter of $\triangle ABD$.

Ans: 42

1.4 Circles *M* and *W* are parallel. The distance between the great circle *W* and circle *M* is 12 units. The radius of circle *M* is 5 units. Find the volume of the sphere.

Ans: $\frac{8788}{3}\pi$

1.5 A triangle with vertices of (0, 3), (3, 5), and (0, 10) is rotated around the *y*-axis. What is the volume of the resulting figure?

Ans: 21π

2.1 \overline{AB} is a diameter of the smaller semicircle and AB = 4. \overline{CD} is the diameter of the larger semicircle and $CD = 4\sqrt{2}$. Find the area of the shaded region.

Ans: 4

2.2 Andrea paints a $4 \times 4 \times 4$ wooden cube chartreuse and Wendi cuts it into 64 unit cubes with her awesome ninja skills. How many of them have 2 or more sides painted?

Ans: 32

2.3 Find the length of the radius of the semicircle.

Ans: $\frac{5}{2}$

2.4 Solve for x.

Ans: 110°

2.5 Find the area of a triangle with vertices (1, 1), (2, 4) and (6, 3).

Ans: $\frac{13}{2}$

3.1 Find the dimensions of all rectangles with integer side lengths such that the area is numerically two times the perimeter.

 5×20

Ans: 6×12

 8×8

3.2 Find the area in which Mr. Taylor can roam.

Ans: 126π

3.3 In the diagram, \overline{DC} is a diameter of the larger circle centered at A, and \overline{AC} is a diameter of the smaller circle centered at B. If \overline{DE} is tangent to the smaller circle at F, and DC = 12, find DE.

Ans: $8\sqrt{2}$

3.4 The hexagon in the diagram is regular with side length 2. Find the area of the shaded region.

Ans: $\frac{5}{2}\sqrt{3}$

3.5 Find the area of the annulus if AC = 2048 and the chord \overline{AC} is tangent to the smaller circle.

4.1 Assume that a hot air balloon is in the form of a perfect sphere. The balloon is rising into the sky at a rate of 502 meters per second. Assuming that gravitational pull creates an acceleration of -9.8 meters per second and that the x velocity is zero, find the volume of the air inside the balloon if the diameter is 6 m

Ans: 36π m³

4.2 Find $\sin A + \sin B - \cos A - \cos B$

4.3 CE = 3. Find the length of the common external tangent \overline{DF}

Ans: 6

- 4.4 Find the coordinates of the centroid of a triangle whose vertices are (24, 6), (5, 13), Ans: (10, 9) and (1, 8).
- 4.5 Write an inequality or pair of inequalities to describe the possible values of x.

Ans: $-\frac{4}{7} < x < 14$

E1: Find x.

Ans: $\frac{12}{5}$

E2: If possible find the value(s) of the real common solution of y for the pair of equations

Ans: 4

$$x^2 + y^2 - 16 = 0$$
$$x^2 - 3y + 12 = 0$$

- $x^2 3y + 12 = 0$
- E3: Find *x*.

Ans: $\sqrt{73-24\sqrt{3}}$